(本小題滿分12分)
設函數(shù)的單調(diào)減區(qū)間是(1,2)
⑴求的解析式;
⑵若對任意的,關于的不等式
時有解,求實數(shù)的取值范圍.

解:⑴.
的單調(diào)減區(qū)間是(1,2),∴,………3分

.        ………5分
⑵由⑴得,[來源:Z。xx。k.Com]
時,≥0,∴單調(diào)遞增,
.
要使關于的不等式時有解,
,       ………7分
對任意恒成立,
只需成立.
,則.    ………9分
,
時,上遞減,在上遞增,:學,科,網(wǎng)]
.
.                                    ………12分

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知為實數(shù),,的導函數(shù).
(Ⅰ)若,求上的最大值和最小值;
(Ⅱ)若上均單調(diào)遞增,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).(e是自然對數(shù)的底數(shù))
(1)判斷上是否是單調(diào)函數(shù),并寫出在該區(qū)間上的最小值;
(2)證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若曲線在點處的切線的傾斜角為,求實數(shù)的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)實數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖像在點處的切線的傾斜角為,問:在什么范圍取值時,函數(shù)在區(qū)間上總存在極值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知
(Ⅰ)若上為增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)當常數(shù)時,設,求上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)已知函數(shù),在點處的切線方程是(e為自然對數(shù)的底)。
(1)求實數(shù)的值及的解析式;
(2)若是正數(shù),設,求的最小值;
(3)若關x的不等式對一切恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)在點處的切線方程為
(I)求的表達式;
(Ⅱ)滿足恒成立,則稱的一個“上界函數(shù)”,如果函數(shù)R)的一個“上界函數(shù)”,求t的取值范圍;
(Ⅲ)當時,討論在區(qū)間(0,2)上極值點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)設函數(shù)f(x)=x3+ax2-a2x+m(a>0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在x∈[-1,1]內(nèi)沒有極值點,求a的取值范圍;
(Ⅲ)若對任意的a∈[3,6],不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范圍.

查看答案和解析>>

同步練習冊答案