已知函數(shù),)的圖象在處的切線與軸平行.
(1)確定實(shí)數(shù)、的正、負(fù)號(hào);
(2)若函數(shù)在區(qū)間上有最大值為,求的值.

(1),;(2).

解析試題分析:(1)先求導(dǎo)數(shù),因?yàn)榍芯與軸平行,所以導(dǎo)數(shù)為0,列出等式,判斷出的符號(hào);(2)求導(dǎo)數(shù),令導(dǎo)數(shù)為0,解出方程的根,利用導(dǎo)數(shù)的正負(fù)判斷出函數(shù)的單調(diào)性,通過分類討論的方法找到最大值,讓最大值等于,解出的值.
試題解析:(1)                1分
由圖象在處的切線與軸平行,
,∴.                2分
,故,.                                      3分
(2) 令,
.                                        4分
,令,得
,得.
于是在區(qū)間內(nèi)為增函數(shù),在內(nèi)為減函數(shù),在內(nèi)為增函數(shù).
的極大值點(diǎn),是極小值點(diǎn).                    5分
,得.                      6分
分類:① 當(dāng)時(shí),,∴ .    
解得,                                      8分
② 當(dāng)時(shí),,                    9分
.     
得  .             10分
,
,                11分
上是增函數(shù),又,∴,       12分
上無實(shí)數(shù)根.                            13分
綜上,的值為.                 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(Ⅱ)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若處的切線方程;
(2)若在區(qū)間上恰有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分16分)如圖,某自來水公司要在公路兩側(cè)排水管,公路為東西方向,在路北側(cè)沿直線排,在路南側(cè)沿直線排,現(xiàn)要在矩形區(qū)域內(nèi)沿直線將接通.已知,,公路兩側(cè)排管費(fèi)用為每米1萬元,穿過公路的部分的排管費(fèi)用為每米2萬元,設(shè)所成的小于的角為

(Ⅰ)求矩形區(qū)域內(nèi)的排管費(fèi)用關(guān)于的函數(shù)關(guān)系式;
(Ⅱ)求排管的最小費(fèi)用及相應(yīng)的角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是實(shí)數(shù),函數(shù),,分別是的導(dǎo)函數(shù),若在區(qū)間上恒成立,則稱在區(qū)間上單調(diào)性一致.
(Ⅰ)設(shè),若函數(shù)在區(qū)間上單調(diào)性一致,求實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè),若函數(shù)在以為端點(diǎn)的開區(qū)間上單調(diào)性一致,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知常數(shù)、都是實(shí)數(shù),函數(shù)的導(dǎo)函數(shù)為,的解集為
(Ⅰ)若的極大值等于,求的極小值;
(Ⅱ)設(shè)不等式的解集為集合,當(dāng)時(shí),函數(shù)只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(I)若函數(shù)上是減函數(shù),求實(shí)數(shù)的最小值;
(2)若,使)成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)上無零點(diǎn),求最小值;
(Ⅲ)若對(duì)任意給定的,在上總存在兩個(gè)不同的),使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),判斷函數(shù)是否有極值;
(Ⅱ)若時(shí),總是區(qū)間上的增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案