【題目】甲、乙兩人在一次射擊比賽中各射靶5次,兩人成績的條形統(tǒng)計圖如圖所示,則( )
A.甲的成績的平均數(shù)小于乙的成績的平均數(shù)
B.甲的成績的中位數(shù)等于乙的成績的中位數(shù)
C.甲的成績的方差小于乙的成績的方差
D.甲的成績的極差小于乙的成績的極差
【答案】C
【解析】解: = ×(4+5+6+7+8)=6,
= ×(5+5+5+6+9)=6,
甲的成績的方差為 ×(22×2+12×2)=2,
以的成績的方差為 ×(12×3+32×1)=2.4.
故選:C.
【考點精析】解答此題的關(guān)鍵在于理解平均數(shù)、中位數(shù)、眾數(shù)的相關(guān)知識,掌握⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)的影響,有時是我們最為關(guān)心的數(shù)據(jù),以及對極差、方差與標(biāo)準(zhǔn)差的理解,了解標(biāo)準(zhǔn)差和方差越大,數(shù)據(jù)的離散程度越大;標(biāo)準(zhǔn)差和方程為0時,樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實際問題時,多采用標(biāo)準(zhǔn)差.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinx﹣xcosx.
(1)討論f(x)在(0,2π)上的單調(diào)性;
(2)若關(guān)于x的方程f(x)﹣x2+2πx﹣m=0在(0,2π)有兩個根,求實數(shù)m的取值范圍.
(3)求證:當(dāng)x∈(0, )時,f(x)< x3 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是正方形, 平面,,點是上的點,且 .
(1)求證:對任意的 ,都有.
(2)設(shè)二面角C-AE-D的大小為 ,直線BE與平面所成的角為 ,
若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體, , ,且兩兩垂直.給出下列四個命題:
①三棱錐的體積為定值;
②經(jīng)過四點的球的直徑為;
③直線∥平面;
④直線所成的角為;
其中真命題的個數(shù)是(。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△中,已知,直線經(jīng)過點.
(Ⅰ)若直線:與線段交于點,且為△的外心,求△的外接圓的方程;
(Ⅱ)若直線方程為,且△的面積為,求點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位招聘面試,每次從試題庫隨機調(diào)用一道試題,若調(diào)用的是A類型試題,則使用后該試題回庫,并增補一道A類試題和一道B類型試題入庫,此次調(diào)題工作結(jié)束;若調(diào)用的是B類型試題,則使用后該試題回庫,此次調(diào)題工作結(jié)束.試題庫中現(xiàn)共有n+m道試題,其中有n道A類型試題和m道B類型試題,以X表示兩次調(diào)題工作完成后,試題庫中A類試題的數(shù)量.
(Ⅰ)求X=n+2的概率;
(Ⅱ)設(shè)m=n,求X的分布列和均值(數(shù)學(xué)期望)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐P﹣ABC的所有頂點都在球O的球面上,△ABC是邊長為1的正三角形,PC為球O的直徑,該三棱錐的體積為 , 則球O的表面積為( 。
A.4π
B.8π
C.12π
D.16π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,an=n2-kn(n∈N*),且{an}單調(diào)遞增,則k的取值范圍是( )
A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)
【答案】D
【解析】
根據(jù)函數(shù)的單調(diào)性可得an+1﹣an>0對于n∈N*恒成立,建立關(guān)系式,解之即可求出k的取值范圍.
∵數(shù)列{an}中,且{an}單調(diào)遞增
∴an+1﹣an>0對于n∈N*恒成立即(n+1)2﹣k(n+1)﹣(n2﹣kn)=2n+1﹣k>0對于n∈N*恒成立
∴k<2n+1對于n∈N*恒成立,即k<3
故選:D.
【點睛】
本題主要考查了數(shù)列的性質(zhì),本題易錯誤地求導(dǎo)或把它當(dāng)成二次函數(shù)來求解,注意n的取值是解題的關(guān)鍵,屬于易錯題.
【題型】單選題
【結(jié)束】
8
【題目】已知等差數(shù)列{an}的前n項和為Sn,S4=40,Sn=210,Sn-4=130,則n=( )
A.12 B.14 C.16 D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視傳媒公司為了了解某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該類體育節(jié)目時間的頻率分布直方圖,其中收看時間分組區(qū)間是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].則圖中x的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com