【題目】我國古達數(shù)學(xué)名著《九章算術(shù)-商功》中闡述:“斜解立方,得兩塹堵,斜解塹堵,其一為陽馬,一為鱉觸,陽馬居二,鱉屬居一.不易之率也。合兩鱉觸三而一,驗之以基,其形露矣,”若稱為“陽馬”的某幾何體的三視圖如圖所示 圖中網(wǎng)格紙上小正方形的邊長為. 則對該兒何體描述:
①四個側(cè)面首飾直角三角形
②最長的側(cè)棱長為
③四個側(cè)面中有三個側(cè)面是全等的直角三角形
④外接球的表面積為
其中正確的個數(shù)為( )
A. B. C. D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)),.
(1)當(dāng)時,求函數(shù)的極小值;
(2)若當(dāng)時,關(guān)于的方程有且只有一個實數(shù)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為,是橢圓上的一點,且在第一象限內(nèi),過且斜率等于-1的直線與橢圓交于另一點,點關(guān)于原點的對稱點為.
(1)證明:直線的斜率為定值;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“科技引領(lǐng),布局未來”科技研發(fā)是企業(yè)發(fā)展的驅(qū)動力量。年,某企業(yè)連續(xù)年累計研發(fā)投入搭億元,我們將研發(fā)投入與經(jīng)營投入的比值記為研發(fā)投入占營收比,這年間的研發(fā)投入(單位:十億元)用右圖中的折現(xiàn)圖表示,根據(jù)折線圖和條形圖,下列結(jié)論錯誤的使( )
A. 年至年研發(fā)投入占營收比增量相比年至年增量大
B. 年至年研發(fā)投入增量相比年至年增量小
C. 該企業(yè)連續(xù)年研發(fā)投入逐年增加
D. 該企業(yè)來連續(xù)年來研發(fā)投入占營收比逐年增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有甲,乙兩個車間生產(chǎn)同一種產(chǎn)品,,甲車間有工人人,乙車間有工人人,為比較兩個車間工人的生產(chǎn)效率,采用分層抽樣的方法抽取工人,甲車間抽取的工人記作第一組,乙車間抽取的工人記作第二組,并對他們中每位工人生產(chǎn)完成的一件產(chǎn)品的事件(單位:)進行統(tǒng)計,按照進行分組,得到下列統(tǒng)計圖.
分別估算兩個車間工人中,生產(chǎn)一件產(chǎn)品時間少于的人數(shù)
分別估計兩個車間工人生產(chǎn)一件產(chǎn)品時間的平均值,并推測車哪個車間工人的生產(chǎn)效率更高?
從第一組生產(chǎn)時間少于的工人中隨機抽取人,記抽取的生產(chǎn)時間少于的工人人數(shù)為隨機變量,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,矩形,、、,將矩形折疊,使O點落在線段上,設(shè)折痕所在直線的斜率為k,則k的取值范圍是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A. 在回歸模型中,預(yù)報變量的值不能由解釋變量唯一確定
B. 若變量,滿足關(guān)系,且變量與正相關(guān),則與也正相關(guān)
C. 在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
D. 以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè),將其變換后得到線性方程,則,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于旋轉(zhuǎn)體的體積,有如下的古爾。guldin)定理:“平面上一區(qū)域D繞區(qū)域外一直線(區(qū)域D的每個點在直線的同側(cè),含直線上)旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體的體積,等于D的面積與D的幾何中心(也稱為重心)所經(jīng)過的路程的乘積”.利用這一定理,可求得半圓盤,繞直線x旋轉(zhuǎn)一周所形成的空間圖形的體積為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com