【題目】關(guān)于旋轉(zhuǎn)體的體積,有如下的古爾丁(guldin)定理:“平面上一區(qū)域D繞區(qū)域外一直線(區(qū)域D的每個(gè)點(diǎn)在直線的同側(cè),含直線上)旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體的體積,等于D的面積與D的幾何中心(也稱為重心)所經(jīng)過的路程的乘積”.利用這一定理,可求得半圓盤,繞直線x旋轉(zhuǎn)一周所形成的空間圖形的體積為_____.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古達(dá)數(shù)學(xué)名著《九章算術(shù)-商功》中闡述:“斜解立方,得兩塹堵,斜解塹堵,其一為陽馬,一為鱉觸,陽馬居二,鱉屬居一.不易之率也。合兩鱉觸三而一,驗(yàn)之以基,其形露矣,”若稱為“陽馬”的某幾何體的三視圖如圖所示 圖中網(wǎng)格紙上小正方形的邊長為. 則對該兒何體描述:
①四個(gè)側(cè)面首飾直角三角形
②最長的側(cè)棱長為
③四個(gè)側(cè)面中有三個(gè)側(cè)面是全等的直角三角形
④外接球的表面積為
其中正確的個(gè)數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《鄭州市城市生活垃圾分類管理辦法》已經(jīng)政府常務(wù)會議審議通過,自2019年12月1日起施行.垃圾分類是對垃圾收集處置傳統(tǒng)方式的改革,是對垃圾進(jìn)行有效處置的一種科學(xué)管理方法.所謂垃圾其實(shí)都是資源,當(dāng)你放錯(cuò)了位置時(shí)它才是垃圾.某企業(yè)在市科研部門的支持下進(jìn)行研究,把廚余垃圾加工處理為一種可銷售的產(chǎn)品.已知該企業(yè)每周的加工處理量最少為75噸,最多為100噸.周加工處理成本y(元)與周加工處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為,且每加工處理一噸廚余垃圾得到的產(chǎn)品售價(jià)為16元.
(Ⅰ)該企業(yè)每周加工處理量為多少噸時(shí),才能使每噸產(chǎn)品的平均加工處理成本最低?
(Ⅱ)該企業(yè)每周能否獲利?如果獲利,求出利潤的最大值;如果不獲利,則需要市政府至少補(bǔ)貼多少元才能使該企業(yè)不虧損?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,下頂點(diǎn)為,為橢圓的左、右焦點(diǎn),過右焦點(diǎn)的直線與橢圓交于兩點(diǎn),且的周長為.
(I)求橢圓的方程;
(II)經(jīng)過點(diǎn)的直線與橢圓交于不同的兩點(diǎn) (均異于點(diǎn)),試探求直線與的斜率之和是否為定值,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的漸近線方程為,一個(gè)焦點(diǎn)為.
(1)求雙曲線的方程;
(2)過雙曲線上的任意一點(diǎn),分別作這兩條漸近線的平行線與這兩條漸近線得到四邊形,證明四邊形的面積是一個(gè)定值;
(3)設(shè)直線與在第一象限內(nèi)與漸近線所圍成的三角形繞著軸旋轉(zhuǎn)一周所得幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=m,點(diǎn)M是棱CD的中點(diǎn).
(1)求異面直線B1C與AC1所成的角的大;
(2)是否存在實(shí)數(shù)m,使得直線AC1與平面BMD1垂直?說明理由;
(3)設(shè)P是線段AC1上的一點(diǎn)(不含端點(diǎn)),滿足λ,求λ的值,使得三棱錐B1﹣CD1C1與三棱錐B1﹣CD1P的體積相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩直線方程與,點(diǎn)在上運(yùn)動(dòng),點(diǎn)在上運(yùn)動(dòng),且線段的長為定值.
(Ⅰ)求線段的中點(diǎn)的軌跡方程;
(Ⅱ)設(shè)直線與點(diǎn)的軌跡相交于,兩點(diǎn),為坐標(biāo)原點(diǎn),若,求原點(diǎn)的直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設(shè)PC與平面ABCD所成的角的正弦為,AP=1,AD=,求三棱錐E-ACD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方形的邊長為2,,分別為,的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,平面平面.
(1)證明:平面;
(2)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com