設(shè)函數(shù),其中為常數(shù)。
(Ⅰ)當時,判斷函數(shù)在定義域上的單調(diào)性;
(Ⅱ)若函數(shù)有極值點,求的取值范圍及的極值點。

(Ⅰ)函數(shù)在定義域上單調(diào)遞增;(Ⅱ)當且僅當有極值點;當時,有惟一最小值點;當時,有一個極大值點和一個極小值點

解析試題分析:(Ⅰ)函數(shù)在定義域上的單調(diào)性的方法,一是利用定義,二是利用導數(shù),此題既有代數(shù)函數(shù)又有對數(shù)函數(shù),顯然利用導數(shù)判斷,只需對求導,判斷的符號即可;(Ⅱ)求的極值,只需對求導即可,利用導數(shù)求函數(shù)的極值一般分為四個步驟:①確定函數(shù)的定義域;②求出;③令,列表;④確定函數(shù)的極值.此題由(Ⅰ)得,當時,函數(shù)無極值點,只需討論的情況,解的根,討論在范圍內(nèi)根的個數(shù),從而確定的取值范圍及的極值點,值得注意的是,求出的根時,忽略討論根是否在定義域內(nèi),而出錯.
試題解析:(Ⅰ)由題意知,的定義域為,  ∴當時,,函數(shù)在定義域上單調(diào)遞增.
(Ⅱ)①由(Ⅰ)得,當時,函數(shù)無極值點,②時,有兩個相同的解,但當時,,當時,時,函數(shù)上無極值點,③當時,有兩個不同解,,時,,而,此時 ,在定義域上的變化情況如下表:

      
      










      練習冊系列答案
      相關(guān)習題

      科目:高中數(shù)學 來源: 題型:解答題

      已知函數(shù)
      (1)當時,試討論函數(shù)的單調(diào)性;
      (2)證明:對任意的 ,有.

      查看答案和解析>>

      科目:高中數(shù)學 來源: 題型:解答題

      (本小題滿分共12分)已知函數(shù),曲線在點處切線方程為。
      (Ⅰ)求的值;
      (Ⅱ)討論的單調(diào)性,并求的極大值。

      查看答案和解析>>

      科目:高中數(shù)學 來源: 題型:解答題

      已知函數(shù)
      (Ⅰ)若對任意,使得恒成立,求實數(shù)的取值范圍;
      (Ⅱ)證明:對,不等式成立.

      查看答案和解析>>

      科目:高中數(shù)學 來源: 題型:解答題

      已知函數(shù)
      (Ⅰ)當時,求的極值;
      (Ⅱ)若在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.

      查看答案和解析>>

      科目:高中數(shù)學 來源: 題型:解答題

      已知函數(shù)是定義在上的奇函數(shù),當時, (其中e是自然界對數(shù)的底,)
      (Ⅰ)設(shè),求證:當時,;
      (Ⅱ)是否存在實數(shù)a,使得當時,的最小值是3 ?如果存在,求出實數(shù)a的值;如果不存在,請說明理由。

      查看答案和解析>>

      科目:高中數(shù)學 來源: 題型:解答題

      設(shè)函數(shù)
      (1)當時,求曲線處的切線方程;
      (2)當時,求函數(shù)的單調(diào)區(qū)間;
      (3)在(2)的條件下,設(shè)函數(shù),若對于[1,2],[0,1],使成立,求實數(shù)的取值范圍.

      查看答案和解析>>

      科目:高中數(shù)學 來源: 題型:解答題

      已知函數(shù)().
      (1)當時,求函數(shù)的單調(diào)區(qū)間;
      (2)當時,取得極值.
      ① 若,求函數(shù)上的最小值;
      ② 求證:對任意,都有.

      查看答案和解析>>

      科目:高中數(shù)學 來源: 題型:解答題

      設(shè)
      (Ⅰ)若,討論的單調(diào)性;
      (Ⅱ)時,有極值,證明:當時,

      查看答案和解析>>

      同步練習冊答案