A. | -4 | B. | 2 | C. | $\frac{8}{3}$ | D. | $\frac{16}{3}$ |
分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{x+y≤2}\\{2x+y≥2}\\{x-y≤2}\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{x-y=2}\\{2x+y=2}\end{array}\right.$,解得A($\frac{4}{3}$,$-\frac{2}{3}$).
化目標(biāo)函數(shù)z=x-2y為y=$\frac{x}{2}-\frac{z}{2}$,
由圖可知,當(dāng)直線y=$\frac{x}{2}-\frac{z}{2}$過A時,直線在y軸上的截距最小,z有最大值為$\frac{8}{3}$.
故選:C.
點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com