2.已知命題p:指數(shù)函數(shù)f(x)=(m+1)x是減函數(shù);命題q:?x∈R,x2+x+m<0,若“p或q”是真命題,則實(shí)數(shù)m的取值范圍是$(-∞,\frac{1}{4})$.

分析 命題p:指數(shù)函數(shù)f(x)=(m+1)x是減函數(shù),則0<m+1<1,解得m范圍.命題q:?x∈R,x2+x+m<0,則△>0,解得m范圍.根據(jù)“p或q”是真命題,即可得出.

解答 解:命題p:指數(shù)函數(shù)f(x)=(m+1)x是減函數(shù),則0<m+1<1,解得-1<m<0.
命題q:?x∈R,x2+x+m<0,則△=1-4m>0,解得m$<\frac{1}{4}$.
若“p或q”是真命題,則-1<m<0或m$<\frac{1}{4}$.解得m$<\frac{1}{4}$.
則實(shí)數(shù)m的取值范圍是$(-∞,\frac{1}{4})$.
故答案為:$(-∞,\frac{1}{4})$.

點(diǎn)評(píng) 本題考查了簡(jiǎn)易邏輯的判定方法、不等式的解法、函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y≤2}\\{2x+y≥2}\\{x-y≤2}\end{array}\right.$,則目標(biāo)函數(shù)z=x-2y的最大值是( 。
A.-4B.2C.$\frac{8}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖四邊形ABCD為邊長(zhǎng)為2的菱形,G為AC與BD交點(diǎn),平面BED⊥平面ABCD,BE=2,AE=2$\sqrt{2}$.

(Ⅰ)證明:BE⊥平面ABCD;
(Ⅱ)若∠ABC=120°,求直線EG與平面EDC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在數(shù)列{an}中,a1=1,an+1=2an+1,猜想這個(gè)數(shù)列的通項(xiàng)公式是${a}_{n}={2}^{n}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖是市兒童樂園里一塊平行四邊形草地ABCD,樂園管理處準(zhǔn)備過線段AB上一點(diǎn)E設(shè)計(jì)一條直線EF(點(diǎn)F在邊BC或CD上,不計(jì)路的寬度),將該草地分為面積之比為2:1的左、右兩部分,分別種植不同的花卉.經(jīng)測(cè)量得AB=18m,BC=10m,∠ABC=120°.設(shè)EB=x,EF=y(單位:m).
(1)當(dāng)點(diǎn)F與C重合時(shí),試確定點(diǎn)E的位置;
(2)求y關(guān)于x的函數(shù)關(guān)系式;
(3)請(qǐng)確定點(diǎn)E、F的位置,使直路EF長(zhǎng)度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{{3}^{x}-a}{{3}^{x}+a}$的定義域?yàn)镽
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的值域
(2)若函數(shù)f(x)是奇函數(shù),①求a的值;②解不等式f(3-m)+f(3-m2)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知單位向量$\overrightarrow{a}$,$\overrightarrow$,且$\overrightarrow{a}$$•\overrightarrow$=-$\frac{1}{2}$
(Ⅰ)求|$\overrightarrow{a}$$+\overrightarrow$|
(Ⅱ)$\overrightarrow{a}$與$\overrightarrow$$-\overrightarrow{a}$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.直線x+2y-3=0的斜率為( 。
A.2B.-2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.小華騎車前往30千米遠(yuǎn)處的風(fēng)景區(qū)游玩,從出發(fā)地到目的地,沿途有兩家超市,小華騎行5千米也沒遇見一家超市,那么他再騎行5千米,至少能遇見一家超市的概率為(  )
A.$\frac{1}{5}$B.$\frac{1}{25}$C.$\frac{9}{25}$D.$\frac{16}{25}$

查看答案和解析>>

同步練習(xí)冊(cè)答案