【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=3an+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足,求數(shù)列{bn}的前n項(xiàng)和Tn.
【答案】(1);(2)
【解析】試題分析:
(1)在已知等式中,令可求得,用 代替可得,兩式相減,可得,從而知是等比數(shù)列,從而得通項(xiàng)公式;
(2)由(1)可得,因此可用錯(cuò)位相減法求得其前項(xiàng)和.
試題解析:
(Ⅰ)當(dāng)n≥2時(shí),an=Sn-Sn-1=3an+1-3an-1-1,
即2an=3an-1,所以=,
當(dāng)n=1時(shí),a1=3a1+1,解得a1=-.
所以數(shù)列{an}是以-為首項(xiàng),為公比的等比數(shù)列,即an=-×.
(2)由(1)可得bn=-×
所以Tn=3×+5×+…+(2n-1) +(2n+1), ①
Tn=3×+5×+…+(2n-1)+(2n+1) , ②
則①—②,得Tn=3×+2×-(2n+1) ,
化簡(jiǎn)整理可得Tn=5-
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且在軸上的頂點(diǎn)分別為,.
(1)求橢圓的方程;
(2)若直線與軸交于點(diǎn),點(diǎn)為直線上異于點(diǎn)的任一點(diǎn),直線分別與橢圓交于點(diǎn),試問(wèn)直線能否通過(guò)橢圓的焦點(diǎn)?若能,求出的值,若不能,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分13分)如圖所示的莖葉圖記錄了甲、乙兩組各四名同學(xué)的投籃命中次數(shù), 乙組記錄中有一個(gè)數(shù)據(jù)模糊,無(wú)法確認(rèn), 在圖中以表示.
(Ⅰ)如果乙組同學(xué)投籃命中次數(shù)的平均數(shù)為, 求及乙組同學(xué)投籃命中次數(shù)的方差;
(Ⅱ)在(Ⅰ)的條件下, 分別從甲、乙兩組投籃命中次數(shù)低于10次的同學(xué)中,各隨機(jī)選取一名, 記事件A:“兩名同學(xué)的投籃命中次數(shù)之和為17”, 求事件A發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),是兩條不同的直線,,,是三個(gè)不同的平面,給出下列四個(gè)命題:
①若,,則
②若,,,則
③若,,則
④若,,則
其中正確命題的序號(hào)是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線與圓C相切,圓心C的坐標(biāo)為
(1)求圓C的方程;
(2)設(shè)直線y=x+m與圓C交于M、N兩點(diǎn).
①若,求m的取值范圍;
②若OM⊥ON,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求在區(qū)間上的最值;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年“十一”期間,高速公路車輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問(wèn)調(diào)查,將他們?cè)谀扯胃咚俟返能囁伲?/span>)分成六段: , , , , , ,后得到如圖的頻率分布直方圖.
(1)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計(jì)值;
(2)若從車速在的車輛中任抽取2輛,求車速在的車輛恰有一輛的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】孝感車天地關(guān)于某品牌汽車的使用年限(年)和所支出的維修費(fèi)用(千元)由如表的統(tǒng)計(jì)資料:
2 | 3 | 4 | 5 | 6 | |
2.1 | 3.4 | 5.9 | 6.6 | 7.0 |
(1)畫(huà)出散點(diǎn)圖并判斷使用年限與所支出的維修費(fèi)用是否線性相關(guān);如果線性相關(guān),求回歸直線方程;
(2)若使用超過(guò)8年,維修費(fèi)用超過(guò)1.5萬(wàn)元時(shí),車主將處理掉該車,估計(jì)第10年年底時(shí),車主是否會(huì)處理掉該車?
()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)若不過(guò)原點(diǎn)的直線與橢圓相交于兩點(diǎn),與直線相交于點(diǎn),且是線段的中點(diǎn),求面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com