【題目】已知函數(shù).
(1)當(dāng)時(shí),求在區(qū)間上的最值;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),有恒成立,求的取值范圍.
【答案】(Ⅰ);
(Ⅱ)見(jiàn)解析;
(Ⅲ)(﹣1,0)
【解析】
(1)求出函數(shù)在區(qū)間上的極值和端點(diǎn)值,比較后可得最值;(2)根據(jù)的不同取值進(jìn)行分類(lèi)討論,得到導(dǎo)函數(shù)的符號(hào)后可得函數(shù)的單調(diào)性;(3)當(dāng)時(shí),求出函數(shù)的最小值為,故問(wèn)題轉(zhuǎn)化為當(dāng)時(shí)恒成立,整理得到關(guān)于的不等式,解不等式可得所求范圍.
(1)當(dāng)時(shí),,
∴.
∴當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.
∴當(dāng)時(shí),函數(shù)取得極小值,也為最小值,且最小值為.
又,,
∴.
所以函數(shù)在區(qū)間上的最小值為,最大值為.
(2)由題意得,.
①當(dāng),即時(shí),恒成立,
∴在上單調(diào)遞減.
②當(dāng)時(shí),恒成立,
∴在上單調(diào)遞增.
③當(dāng)時(shí),,
由得,或(舍去),
∴在上單調(diào)遞減,在上單調(diào)遞增.
綜上可得,當(dāng),在上單調(diào)遞增;
當(dāng)時(shí),在上單調(diào)遞減,在單調(diào)遞增;
當(dāng)時(shí),在上單調(diào)遞減.
(3)由(2)可得,當(dāng)時(shí),,
若不等式恒成立,則只需,
即,
整理得,
解得,
∴,
又,
∴.
∴實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方體中,若分別是棱的中點(diǎn),則必有( )
A.
B.
C. 平面平面
D. 平面平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD為直角梯形,∠C=∠CDA=90°,AD=2BC=2CD=2,P為平面ABCD外一點(diǎn),且PB⊥BD.
(1)求證:PA⊥BD;
(2)若直線l過(guò)點(diǎn)P,且直線l∥直線BC,試在直線l上找一點(diǎn)E,使得直線PC∥平面EBD;
(3)若PC⊥CD,PB=4,求四棱錐P﹣ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】世界那么大,我想去看看,處在具有時(shí)尚文化代表的大學(xué)生們旅游動(dòng)機(jī)強(qiáng)烈,旅游可支配收入日益增多,可見(jiàn)大學(xué)生旅游是一個(gè)巨大的市場(chǎng).為了解大學(xué)生每年旅游消費(fèi)支出(單位:百元)的情況,相關(guān)部門(mén)隨機(jī)抽取了某大學(xué)的名學(xué)生進(jìn)行問(wèn)卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:
組別 | |||||
頻數(shù) |
(Ⅰ)求所得樣本的中位數(shù)(精確到百元);
(Ⅱ)根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為學(xué)生的旅游費(fèi)用支出服從正態(tài)分布,若該所大學(xué)共有學(xué)生人,試估計(jì)有多少位同學(xué)旅游費(fèi)用支出在元以上;
(Ⅲ)已知樣本數(shù)據(jù)中旅游費(fèi)用支出在范圍內(nèi)的名學(xué)生中有名女生, 名男生,現(xiàn)想選其中名學(xué)生回訪,記選出的男生人數(shù)為,求的分布列與數(shù)學(xué)期望.
附:若,則,
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí))
(1)應(yīng)收集多少位女生樣本數(shù)據(jù)?
(2)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:.估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4個(gè)小時(shí)的概率.
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4個(gè)小時(shí).請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別的列聯(lián)表,并判斷是否有的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,ABCD是一塊邊長(zhǎng)為7米的正方形鐵皮,其中ATN是一半徑為6米的扇形,已經(jīng)被腐蝕不能使用,其余部分完好可利用.工人師傅想在未被腐蝕部分截下一個(gè)有邊落在BC與CD上的長(zhǎng)方形鐵皮,其中P是弧TN上一點(diǎn).設(shè),長(zhǎng)方形的面積為S平方米.
(1)求關(guān)于的函數(shù)解析式;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某住宅小區(qū)的平面圖呈圓心角為的扇形,小區(qū)的兩個(gè)出入口設(shè)置在點(diǎn)及點(diǎn)處,且小區(qū)里有一條平行于的小路。
(1)已知某人從沿走到用了分鐘,從沿走到用了分鐘,若此人步行的速度為每分鐘米,求該扇形的半徑的長(zhǎng)(精確到米)
(2)若該扇形的半徑為,已知某老人散步,從沿走到,再?gòu)?/span>沿走到,試確定的位置,使老人散步路線最長(zhǎng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)點(diǎn)P作圓O的割線PBA與切線PE,E為切點(diǎn),連接AE、BE,∠APE的平分線與AE、BE分別交于點(diǎn)C、D,其中∠AEB=30°.
(1)求證:
(2)求∠PCE的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的左、右焦點(diǎn)分別為、,是雙曲線上一點(diǎn),且軸,若的內(nèi)切圓半徑為,則其漸近線方程是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com