如圖所示,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.則棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值是( )
A. 2:1
B. 1:1
C. 1:2
D. 1:3
設(shè)AB=a.由題設(shè)知AQ為棱錐Q-ABCD的高,所以棱錐Q-ABCD的體積V
1=
.
易證PQ⊥面DCQ,而PQ=
,△DCQ的面積為
,
所以棱錐P-DCQ的體積V
2=
.故棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值為1:1,選C.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,直三棱柱ABC-A
1B
1C
1中, D、E分別是AB,BB
1的中點(diǎn).
(1)證明: BC
1//平面A
1CD;
(2)設(shè)AA
1="AC=CB=1," AB=
,求三棱錐D一A
1CE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,AB是圓O的直徑,點(diǎn)C是弧AB的中點(diǎn),點(diǎn)V是圓O所在平面外一點(diǎn),
是AC的中點(diǎn),已知
,
.
(1)求證:AC⊥平面VOD;
(2)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在五面體
中,已知
平面
,
,
,
,
.
(1)求證:
;
(2)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,一簡單組合體的一個面ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,且DC
平面ABC.
(1)證明:平面ACD
平面
;
(2)若
,
,
,試求該簡單組合體的體積V.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在球面上有四個點(diǎn)P、A、B、C,如果PA、PB、PC兩兩互相垂直,且PA=PB=PC=a.則這個球的表面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若用一個平面去截球體,所得截面圓的面積為
,球心到該截面的距離是
,則這個球的表面積是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知函數(shù)
將
的圖像與
軸圍成的封閉圖形繞
軸旋轉(zhuǎn)一周,所得旋轉(zhuǎn)體的體積為___________.
查看答案和解析>>