【題目】若 的平均數(shù)為3,標準差為4,且 , ,則新數(shù)據(jù) 的平均數(shù)和標準差分別為( )
A.-9 12
B.-9 36
C.3 36
D.-3 12
【答案】D
【解析】由平均數(shù)和標準差的性質(zhì)可知,若 的平均數(shù)為 ,標準差為 ,
則: 的平均數(shù)為 ,標準差為 ,
據(jù)此結(jié)合題意可得: 的平均數(shù)為: ,標準差分別為 , 所以答案是:D.
【考點精析】根據(jù)題目的已知條件,利用平均數(shù)、中位數(shù)、眾數(shù)和極差、方差與標準差的相關知識可以得到問題的答案,需要掌握⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關系,所以最為重要,應用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關,不受個別數(shù)據(jù)的影響,有時是我們最為關心的數(shù)據(jù);標準差和方差越大,數(shù)據(jù)的離散程度越大;標準差和方程為0時,樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實際問題時,多采用標準差.
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的多面體中, 平面 , , , , , , , 是 的中點.
(Ⅰ)求證: ;
(Ⅱ)求平面 與平面 所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“求方程 的解”有如下解題思路:設 ,則 在 上單調(diào)遞減,且 ,所以原方程有唯一解 .類比上述解題思路,不等式 的解集是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2x- 的定義域為(0,1](a為實數(shù)).
(1)當a=1時,求函數(shù)y=f(x)的值域;
(2)求函數(shù)y=f(x)在區(qū)間(0,1]上的最大值及最小值,并求出當函數(shù)f(x)取得最值時x的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 為坐標原點, , 是橢圓 上的點,且 ,設動點 滿足 .
(Ⅰ)求動點 的軌跡 的方程;
(Ⅱ)若直線 與曲線 交于 兩點,求三角形 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,給出以下四個命題:
① ,有 ;
② 且 ,有 ;
③ ,有 ;
④ , .
其中所有真命題的序號是( )
A.①②
B.③④
C.①②③
D.①②③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,底面為平行四邊形, , , , 點在底面內(nèi)的射影在線段上,且, , 為的中點, 在線段上,且.
(Ⅰ)當時,證明:平面平面;
(Ⅱ)當平面與平面所成的二面角的正弦值為時,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,公園有一塊邊長為2的等邊△ABC的邊角地,現(xiàn)修成草坪,圖中DE把草坪分成面積相等的兩部分,D在AB上,E在AC上.
(1)設AD=x(x≥1),ED=y,求用x表示y的函數(shù)關系式;
(2)如果DE是灌溉水管,為節(jié)約成本,希望它最短,DE的位置應在哪里?如果DE是參觀線路,則希望它最長,DE的位置又應在哪里?請予證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com