【題目】已知向量,向量與向量的夾角為,且.

(1)求向量;

(2)設向量,向量,其中,若,試求的取值范圍.

【答案】(1)(2)

【解析】

(1)設向量=(x,y),由已知中向量=(1,1),向量與向量夾角為,且=﹣1.根據向量數(shù)量積的運算法則,可得到關于x,y的方程組,解方程可得向量的坐標;(2)由向量=(1,0)向量,其中(),其中,若=0,我們可以求出2的表達式,利用三角函數(shù)的性質可得的取值范圍.

(1)設向量=(x,y),∵向量=(1,1),

=x+y=﹣1…①=||||cos=﹣1,

x2+y2=1

解得x=0,y=﹣1x=﹣1,y=0

=(﹣1,0),或=(0,﹣1),

(2)∵向量=(1,0),,則=(0,﹣1),

又∵向量=(cosx,cos2)),

+=(cosx,cos2)﹣1)=(cosx, ),

則|+|2=cos2x+=cos2x-sinx+=- ,

,|+|2

|+|≤

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(題文)如圖在三棱錐中, 分別為棱的中點,已知,

求證(1)直線平面;

(2)平面 平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的三邊長分別是,,.下列說法正確的是(

A.所在直線為旋轉軸,將此三角形旋轉一周,所得旋轉體的側面積為

B.所在直線為旋轉軸,將此三角形旋轉一周,所得旋轉體的體積為

C.所在直線為旋轉軸,將此三角形旋轉一周,所得旋轉體的側面積為

D.所在直線為旋轉軸,將此三角形旋轉一周,所得旋轉體的體積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】江心洲有一塊如圖所示的江邊,,為岸邊,岸邊形成角,現(xiàn)擬在此江邊用圍網建一個江水養(yǎng)殖場,有兩個方案:方案l:在岸邊上取兩點,用長度為的圍網依托岸邊線圍成三角形,兩邊為圍網);方案2:在岸邊,上分別取點,用長度為的圍網依托岸邊圍成三角形.請分別計算面積的最大值,并比較哪個方案好.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于任意實數(shù),定義設函數(shù),,則函數(shù)的最大值是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為F1,F(xiàn)2,離心率,且橢圓的短軸長為2.

(1)求橢圓的標準方程;

(2)已知直線l1l2過右焦點F2,且它們的斜率乘積為﹣1,設l1,l2分別與橢圓交于點A,B和C,D.①求AB+CD的值;②設AB的中點M,CD的中點為N,求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐,底面,底面為等腰梯形,,,,點E邊上的點,.

1)求證:平面

2)若,求點E到平面的距離 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方形ABCD的邊長為2,ACBD=O.將正方形ABCD沿對角線BD折起,使AC=a,得到三棱錐A-BCD,如圖所示.

(1)a=2,求證:AO平面BCD.

(2)當二面角A-BD-C的大小為120°,求二面角A-BC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,縱、橫坐標都是整數(shù)的點稱為整點。請設計一種方法將所有的整點染色,每一個整點染成白色、紅色或黑色中的一種顏色,使得

(1)每一種顏色的點出現(xiàn)在無窮多條平行于橫軸的直線上;

(2)對于任意白點、紅點及黑點,總可以找到一個紅點,使為一平行四邊形。證明你設計的方法符合上述要求。

查看答案和解析>>

同步練習冊答案