分析 (1)由等比數(shù)列通項(xiàng)公式得${a_3}{a_5}={a_4}^2=4({{a_4}-1})$,求出a4=2,進(jìn)而得到公式q=2,由此能求出an.
(2)由${b_n}={log_2}({16{a_n}})={log_2}{2^{n+1}}=n+1$,得$\frac{1}{{{b_n}{b_{n+1}}}}=\frac{1}{{({n+1})({n+2})}}=\frac{1}{n+1}-\frac{1}{n+2}$.由此利用裂項(xiàng)求和法能證明$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n項(xiàng)和${S_n}<\frac{1}{2}$.
解答 解:(1)∵等比數(shù)列{an}滿足${a_1}=\frac{1}{4},{a_3}{a_5}=4({{a_4}-1})$.
∴${a_3}{a_5}={a_4}^2=4({{a_4}-1})$,
解得a4=2,
∴$\frac{{a}_{4}}{{a}_{1}}={q}^{3}$=8,解得q=2,
∴${a}_{n}=\frac{1}{4}×{2}^{n-1}$=2n-3.
(2)證明:${b_n}={log_2}({16{a_n}})={log_2}{2^{n+1}}=n+1$,
∴$\frac{1}{{{b_n}{b_{n+1}}}}=\frac{1}{{({n+1})({n+2})}}=\frac{1}{n+1}-\frac{1}{n+2}$.
∴${S_n}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}…\frac{1}{n+1}-\frac{1}{n+2}=\frac{1}{2}-\frac{1}{n+2}<\frac{1}{2}$.
∴$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n項(xiàng)和${S_n}<\frac{1}{2}$.
點(diǎn)評 本題考查數(shù)列的通項(xiàng)的求法,考查數(shù)列的前n項(xiàng)和小于$\frac{1}{2}$的證明,考查等比數(shù)列、裂項(xiàng)求和法等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-\frac{1}{3}ln6,ln2}]$ | B. | $({-ln2,-\frac{1}{3}ln6})$ | C. | $({-ln2,-\frac{1}{3}ln6}]$ | D. | $({-\frac{1}{3}ln6,ln2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com