分析 先分別判斷命題P和Q的真假,將sin2x的圖象向右平移$\frac{π}{3}$個單位得到函數(shù)y=sin2(x-$\frac{π}{3}$)=sin(2x-$\frac{2π}{3}$),故命題P為假命題,y=sin(x+$\frac{π}{6}$)cos($\frac{π}{3}-x)$=$\frac{1}{2}cos(2x-\frac{2π}{3})+\frac{1}{2}$,周期T=π,故命題Q為真.再根據(jù)真值表分別判斷“P或Q”“P且Q”“非P”的真假性即可.
解答 解:對于命題P:將sin2x的圖象向右平移$\frac{π}{3}$個單位得到函數(shù)y=sin2(x-$\frac{π}{3}$)=sin(2x-$\frac{2π}{3}$),
故命題P為假命題;
對于命題Q:y=sin(x+$\frac{π}{6}$)cos($\frac{π}{3}$-x)=sin[$\frac{π}{2}-(\frac{π}{3}-x)$]cos($\frac{π}{3}-x$)=$co{s}^{2}(\frac{π}{3}-x)$=$\frac{1+cos(\frac{2π}{3}-2x)}{2}$=$\frac{1}{2}cos(2x-\frac{2π}{3})+\frac{1}{2}$,周期T=$\frac{2π}{2}=π$,故命題Q為真命題.
根據(jù)真值表,“P或Q“為真命題,“P且Q“為假命題,“非P“為真命題.
故答案為:2.
點評 本題主要考察了復合命題p或q,p且q,非p的真假性判斷,解題的關鍵是熟練應用三角函數(shù)的圖象的平移,及誘導公式、二倍角公式.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | 0 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com