已知棱長為1的正方體ABCD-A1B1C1D1中,E是A1B1的中點,則直線AE與平面ABC1D1所成角的正弦值為________.

 

 

【解析】如圖建立空間直角坐標(biāo)系,=(0,1,0),=(-1,0,1),=(0,,1),

設(shè)平面ABC1D1的法向量為n=(x,y,z),

由n·=0,n·=0,可解得n=(1,0,1)

設(shè)直線AE與平面ABC1D所成的角為θ,則sinθ=

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:填空題

設(shè)m,n∈R,若直線l:mx+ny-1=0與x軸相交于點A,與y軸相交于點B,且l與圓x2+y2=4相交所得弦的長為2,O為坐標(biāo)原點,則△AOB面積的最小值為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-2直線的交點坐標(biāo)與距離公式(解析版) 題型:選擇題

若動點A,B分別在直線l1:x+y-7=0和l2:x+y-5=0上移動,則AB的中點M到原點的距離的最小值為(  )

A.3 B.2 C.3 D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-1直線的傾斜角與斜率、直線方程(解析版) 題型:選擇題

直線xcosα+y+2=0的傾斜角的取值范圍是(  )

A.[-,] B.[,]

C.[0,]∪[,π) D.[0,]∪[,π]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-7立體幾何中的向量方法(解析版) 題型:解答題

如下圖所示,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成的角為60°.

(1)求證:AC⊥平面BDE;

(2)求二面角F-BE-D的余弦值;

(3)設(shè)點M是線段BD上一個動點,試確定點M的位置,使得AM∥平面BEF,并證明你的結(jié)論.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-7立體幾何中的向量方法(解析版) 題型:選擇題

在正方體ABCD-A1B1C1D1中,M、N分別為棱AA1和BB1的中點,則sin〈,〉的值為(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-6空間向量及運算(解析版) 題型:填空題

如圖,直三棱柱ABC-A1B1C1中,AB=AC=1,AA1=2,∠B1A1C1=90°,D為BB1的中點,則異面直線C1D與A1C所成角的余弦值為________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-5直線、平面垂直的判定及性質(zhì)(解析版) 題型:選擇題

如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結(jié)論正確的是(  )

A.PB⊥AD

B.平面PAB⊥平面PBC

C.直線BC∥平面PAE

D.直線PD與平面ABC所成的角為45°

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-2空間幾何體的表面積和體積(解析版) 題型:填空題

如圖所示,一個三棱錐的三視圖是三個直角三角形(單位: cm),則該三棱錐的外接球的表面積為________cm2.

 

 

查看答案和解析>>

同步練習(xí)冊答案