5.sin3x=3sinx的一個(gè)充要條件是( 。
A.sinx=0B.cosx=0C.sinx=1D.cosx=1

分析 利用sin3x=3sinx-4sin3x,代入化簡即可得出.

解答 解:∵sin3x=3sinx-4sin3x,∴sin3x=3sinx?sinx=0
故選:A.

點(diǎn)評(píng) 本題考查了三倍角公式、三角函數(shù)方程,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.把-$\frac{11}{4}$π表示成2kπ+θ(k∈Z)的形式,且使θ∈(0,2π),則θ的值為( 。
A.$\frac{5}{4}π$B.$\frac{3}{4}π$C.$\frac{1}{4}π$D.$\frac{7}{4}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,BC為⊙O的直徑,且BC=6,延長CB與⊙O在點(diǎn)D處的切線交于點(diǎn)A,若AD=4,則AB=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若f(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$,g(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$則下列等式不正確的是( 。
A.f(2x)=2g2(x)+1B.f2(x)-g2(x)=1C.f2(x)+g2(x)=f(2x)D.f(x+y)=f(x)f(y)-g(x)g(y)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知拋物線y=4ax2,則其準(zhǔn)線方程是( 。
A.y=-$\frac{1}{16a}$B.x=-aC.y=±$\frac{1}{16a}$D.x=±a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=lg(3-2x)的定義域?yàn)椋?∞,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.△ABC中,∠C=90°,點(diǎn)M在邊BC上,且滿足BC=3BM,若$sin∠BAM=\frac{1}{5}$,則sin∠BAC=$\frac{{\sqrt{15}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.若函數(shù)f(x)=$\sqrt{3}sin2x+2{cos^2}$x+m在區(qū)間$[0,\frac{π}{2}]$上的最小值為3,求常數(shù)m的值及此函數(shù)當(dāng)x∈[a,a+π](其中a可取任意實(shí)數(shù))時(shí)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.一個(gè)盒子中裝有 1個(gè)黑球和2個(gè)白球,這3個(gè)球除顏色外完全相同,有放回地連續(xù)抽取2次,每次從中任意地取出1個(gè)球.計(jì)算下列事件的概率:
(1)取出的兩個(gè)球都是白球;
(2)第一次取出白球,第二次取出黑球;
(3)取出的兩個(gè)球中至少有一個(gè)白球.

查看答案和解析>>

同步練習(xí)冊(cè)答案