7.已知圓O的半徑為R(R為常數(shù)),它的內(nèi)接三角形ABC滿足2R(sin2A-sin2C)=(a-b)sinB,其中a,b,c分別為角A,B,C的對邊.
(1)求角C;
(2)若c=$\sqrt{7}$,且△ABC的面積為$\frac{{3\sqrt{3}}}{2}$,求△ABC的周長.

分析 (1)利用正弦定理余弦定理即可得出.
(2)利用三角形面積計算公式、余弦定理即可的.

解答 解:(1)∵2R(sin2A-sin2C)=(a-b)sinB,
由正弦定理得a=2Rsin A,b=2R sinB,c=2R sinC,
代入上式得a2-c2=ab-b2,即a2+b2-c2=ab,
由余弦定理得$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=\frac{ab}{2ab}=\frac{1}{2}$,
又C為△ABC的內(nèi)角,∴$C=\frac{π}{3}$.
(2)${S_{△abc}}=\frac{1}{2}absinC=\frac{{3\sqrt{3}}}{2}$,
∵$C=\frac{π}{3}$,∴ab=6$cos\frac{π}{3}=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=\frac{{{{({a+b})}^2}-2ab-7}}{2ab}=\frac{1}{2}$.
∴a+b=5,
∴△ABC的周長為$5+\sqrt{7}$.

點評 本題考查了三角形面積計算公式、正弦定理余弦定理,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.[重點中學(xué)做]定義:[x]表示不超過x的最大整數(shù),例如[1.5]=1,[-0.5]=-1,給出下列結(jié)論:
①函數(shù)y=[sinx]是奇函數(shù);
②函數(shù)y=[sinx]是周期為π的周期函數(shù);
③函數(shù)y=[sinx]-cosx不存在零點;
④函數(shù)y=[sinx]-[cosx]的值域為[-1,0,1].
其中正確結(jié)論是( 。
A.①③B.②④C.③④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知體積為$\sqrt{6}$的長方體的八個頂點都在球面上,在這個長方體中,有兩個面的面積分別為$\sqrt{2}$、$\sqrt{3}$,那么球O的表面積等于( 。
A.πB.$\sqrt{6}$πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知等差數(shù)列{an}的前n項為Sn,a3-a1=4,S3=-18,
(1)求{an}的通項公式;
(2)若Sk=-14,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,角A,B,C所對的邊分別為a,b,c,A=60°,a=4$\sqrt{3}$,b=4$\sqrt{2}$,則B等于(  )
A.30°B.45°C.60°D.135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知m+4n=4(m>0,n>0),則mn的最大值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)i為虛數(shù)單位,則下列四個式子正確的是(  )
A.3i>2iB.|2-i|>2i2C.|2+3i|>|1-4i|D.i2>-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.將5名應(yīng)屆大學(xué)畢業(yè)生分給3個用人單位,每個單位至少1名,一共有150種分配方案.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,已知長方體ABCD-A1B1C1D1,底面是邊長為1的正方形,高AA1=2.
求:(1)異面直線BD與AB1所成角的余弦值;
(2)若P為C1D1上的任意一點,求四面體P-ABD的體積.

查看答案和解析>>

同步練習(xí)冊答案