20.程序框圖如圖所示:如果輸入x=5,則輸出結(jié)果為( 。
A.325B.109C.973D.295

分析 方法一:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)計(jì)算變量x的值,并輸出.模擬程序的運(yùn)行,用表格對(duì)程序運(yùn)行過程中各變量的值進(jìn)行分析,不難得到輸出結(jié)果.
方法二:由程序框圖可知:此問題相當(dāng)于先求出滿足以下條件:數(shù)列{an}的a1=5,an+1=3an-2,要求其通項(xiàng)公式第一次大于或等于200時(shí)即輸出其值.

解答 解:方法一:程序在運(yùn)行過程中各變量的值如下表示:
x    是否繼續(xù)循環(huán)
循環(huán)前   5/
第一圈   13        是
第二圈   37        是
第三圈   109       是
第四圈   325       否
故最后輸出的x值為325,
方法二:由序框圖可知:此問題相當(dāng)于先求出滿足以下條件數(shù)列的通項(xiàng)公式,數(shù)列{an}的a1=5,an+1=3an-2,當(dāng)an≥200時(shí),即輸出an
∵an+1=3an-2,∴an+1-1=3(an-1),
∵a1-1=5-1=4≠0,∴數(shù)列{an}是以4為首項(xiàng),3為公比的等比數(shù)列,
∴an-1=4×3n-1,
∴an=4×3n-1+1,
令4×3n-1+1≥200,解得n≥5.
故當(dāng)n=5時(shí),輸出的x應(yīng)是4×34+1=325.
選:A.

點(diǎn)評(píng) 根據(jù)流程圖(或偽代碼)寫程序的運(yùn)行結(jié)果,是算法這一模塊最重要的題型,其處理方法是::①分析流程圖(或偽代碼),從流程圖(或偽代碼)中即要分析出計(jì)算的類型,又要分析出參與計(jì)算的數(shù)據(jù)(如果參與運(yùn)算的數(shù)據(jù)比較多,也可使用表格對(duì)數(shù)據(jù)進(jìn)行分析管理)⇒②建立數(shù)學(xué)模型,根據(jù)第一步分析的結(jié)果,選擇恰當(dāng)?shù)臄?shù)學(xué)模型③解模.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知A,B是橢圓3x2+y2=m(m>0)上不同兩點(diǎn),線段AB的中點(diǎn)為N(1,3).則m的取值范圍為(12,+∞),AB所在的直線方程為y=-x+4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在正方體ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分別是CC1、AD的中點(diǎn).那么異面直線OE和FD1所成角的余弦值為$\frac{\sqrt{15}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點(diǎn)分別為F1,F(xiàn)2,P是橢圓上的點(diǎn).若PF1⊥F1F2,∠F1PF2=60°,則橢圓的離心率為( 。
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右頂點(diǎn)為A,離心率為e,且橢圓C過點(diǎn)$E(2e,\frac{2})$,以AE為直徑的圓恰好經(jīng)過橢圓的右焦點(diǎn)F.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知?jiǎng)又本l(直線l不過原點(diǎn))與橢圓C交于P、Q兩點(diǎn),且△OPQ的面積S△OPQ=1,求線段PQ的中點(diǎn)N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,F(xiàn)是橢圓Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn),已知點(diǎn)A(0,-2)與橢圓右頂點(diǎn)關(guān)于直線y=-x對(duì)稱,且直線AF的斜率為$\frac{2\sqrt{3}}{3}$.
(Ⅰ)求橢圓Γ的方程;
(Ⅱ)若點(diǎn)C,D(C在第一象限)都在橢圓Γ上,點(diǎn)B為橢圓Γ的右頂點(diǎn),滿足$\overrightarrow{OC}$=λ$\overrightarrow{DB}$,且$\overrightarrow{OC}$•$\overrightarrow{OD}$=0,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)滿足f(1)=0,且f(x)在R上的導(dǎo)數(shù)滿足f′(x)+1<0,則不等式f(x2)<-x2+1的解集為( 。
A.(-∞,-1)∪(1,+∞)B.(1,+∞)C.(-∞,1)D.(-1,1 )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知向量$\overrightarrow{a}$=(x1,y1,z1),$\overrightarrow$=(x2,y2,z2),$\overrightarrow{a}$≠$\overrightarrow$,設(shè)|$\overrightarrow{a}-\overrightarrow$|=k,則|$\overrightarrow{a}-\overrightarrow$與單位向量$\overrightarrow{i}$=(1,0,0)夾角的余弦值為( 。
A.$\frac{{x}_{1}-{x}_{2}}{k}$B.$\frac{{x}_{2}-{x}_{1}}{k}$C.$\frac{|{x}_{1}-{x}_{2}|}{k}$D.±$\frac{{x}_{1}-{x}_{2}}{k}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)集合A={x|2≤x≤4},B={x|x>3,或x<1},C={x|t+1<x<2t},t∈R.
(Ⅰ)求A∪∁UB;
(Ⅱ)若A∩C=C,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案