5.已知集合A={x∈N+|3x-9<0},集合B={x|$\frac{1}{2}$<2x<8},集合C={1,2a-4}.
(1)求A∩B;
(2)若C⊆(A∩B),求實數(shù)a的值.

分析 (1)化簡集合A,B,即可求A∩B;
(2)若C⊆(A∩B),可得方程,即可求實數(shù)a的值.

解答 解:(1)集合A={x∈N+|3x-9<0}={1,2},集合B={x|$\frac{1}{2}$<2x<8}={x|-1<x<3},
∴A∩B={1,2};
(2)若C⊆(A∩B),C={1,2a-4},則2a-4=2,a=3.

點評 本題考查集合的運(yùn)算與關(guān)系,正確化簡集合是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.曲線y=sinx+cosx在x=$\frac{π}{4}$處切線傾斜角的大小是(  )
A.0B.$\frac{π}{4}$C.-$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)=x3-3x+2+m(m>0),在區(qū)間[0,2]上存在三個不同的實數(shù)a,b,c,使得以f(a),f(b),f(c)為邊長的三角形是直角三角形,則m的取值范圍是0<m<4+4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知F1,F(xiàn)2是雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,點M在E上,MF1與x軸垂直,sin∠MF2F1=$\frac{1}{3}$,則E的離心率為(  )
A.2B.$\frac{3}{2}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在等腰梯形ABCD中,已知AB∥DC,AB=2CD=4.若$\overrightarrow{AC}$•$\overrightarrow{BD}$=-1,則$\overrightarrow{AD}$•$\overrightarrow{BC}$=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.對于函數(shù)f(x),若關(guān)于x的方程f(2x2-4x-5)+sin($\frac{π}{3}$x+$\frac{π}{6}$)=0只有9個根,則這9個根之和為( 。
A.9B.18C.πD.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.?dāng)?shù)列{an}中,若Sn=n2-2,n∈N*,則an=$\left\{\begin{array}{l}{-1,n=1}\\{2n-1,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.空氣質(zhì)量指數(shù)(Air Quality Index,簡稱AQI)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照AQI大小分為六級,0~50為優(yōu);51~100為良;101~150為輕度污染;151~200為中度污染;201~250為重度污染;>300為嚴(yán)重污染.一環(huán)保人士記錄2017年某地某月10天的AQI的莖葉圖如下.
(1)利用該樣本估計該地本月空氣質(zhì)量優(yōu)良(AQI≤100)的天數(shù);(按這個月總共30天計算)
(2)若從樣本中的空氣質(zhì)量不佳(AQI>100)的這些天,隨機(jī)地抽取兩天深入分析各種污染指標(biāo),求這該兩天的空氣質(zhì)量等級恰好不同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知數(shù)列{an}為等差數(shù)列,且滿足a1+a5=90.若(1-x)m展開式中x2項的系數(shù)等于數(shù)列{an}的第三項,則m的值為(  )
A.6B.8C.9D.10

查看答案和解析>>

同步練習(xí)冊答案