6.已知向量$\vec a=({1,2-x})$,$\vec b=({1+x,2})$.
(1)若$\vec a∥\vec b$,求x的值;
(2)當(dāng)x∈[0,2]時(shí),求$\vec a•({\vec a-\vec b})$的取值范圍.

分析 (1)運(yùn)用向量共線的坐標(biāo)表示,可得x的方程,解方程即可;
(2)運(yùn)用向量的坐標(biāo)運(yùn)算和數(shù)量積的坐標(biāo)表示,結(jié)合二次函數(shù)的最值求法,即可得到所求范圍.

解答 解:(1)因?yàn)橄蛄?\vec a=({1,2-x})$,$\vec b=({1+x,2})$,$\vec a∥\vec b$,
所以(2-x)(1+x)=1×2,即為x2-x=0
解得x=0或x=1;
(2)因?yàn)?\vec a=({1,2-x})$,$\vec b=({1+x,2})$,所以$\vec a-\vec b=({-x,-x})$,
所以$\vec a•({\vec a-\vec b})=-x+({-x})({2-x})={x^2}-3x={({x-\frac{3}{2}})^2}-\frac{9}{4}$,
因?yàn)閤∈[0,2],當(dāng)x=$\frac{3}{2}$時(shí)取得最小值-$\frac{9}{4}$,當(dāng)x=0時(shí),x2-3x=0;當(dāng)x=2時(shí),x2-3x=-2,
可得最大值為0,
所以$\vec a•({\vec a-\vec b})$的取值范圍$[{-\frac{9}{4},0}]$.

點(diǎn)評(píng) 本題考查向量共線的坐標(biāo)表示和向量數(shù)量積的坐標(biāo)表示,同時(shí)考查二次函數(shù)在閉區(qū)間上的最值求法,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在矩陣A的變換下,坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的3倍,縱坐標(biāo)不變.
(1)求矩陣A及A-1;
(2)求圓x2+y2=4在矩陣A-1的變換下得到的曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.命題:“?x>0,x2-x≥0”的否定形式是( 。
A.?x≤0,x2-x>0B.?x>0,x2-x≤0C.?x≤0,x2-x>0D.?x>0,x2-x<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.計(jì)算下列式子的值:
(1)$lg8+lg125-{(\frac{1}{7})^{-2}}+{16^{\frac{3}{4}}}+{(\sqrt{3}-1)^0}$;
(2)$sin\frac{25π}{6}+cos\frac{25π}{3}+tan(-\frac{25π}{4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知$A={60°},b=4,{S_{△ABC}}=4\sqrt{3}$,則a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知平行直線l1:2x+y-1=0,l2:2x+y+1=0,則l1,l2的距離$\frac{2\sqrt{5}}{5}$;點(diǎn)(0,2)到直線l1的距離$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知點(diǎn)P在曲線C上,P到F(1,0)的距離比它到直線l:x+2=0的距離小1,直線y=x-2與曲線C交于A,B兩點(diǎn).
(1)求弦AB的長(zhǎng)度;
(2)若點(diǎn)P在第一象限,且△ABP面積為$2\sqrt{3}$,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知角α的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與x軸的非負(fù)半軸重合,終邊經(jīng)過點(diǎn)$P({-3,\sqrt{3}})$.
(1)求sin2α-tanα的值;
(2)若函數(shù)f(x)=cos(x-α)cosα-sin(x-α)sinα,求函數(shù)$g(x)-\sqrt{3}f({\frac{π}{2}-2x})-2{f^2}(x)$在區(qū)間$[{0,\frac{2π}{3}}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知橢圓$C:\frac{x^2}{4}+{y^2}=1$的上、下頂點(diǎn)分別為A,B,點(diǎn)P在橢圓上,且異于點(diǎn)A,B,直線AP,BP與直線l:y=-2分別交于點(diǎn)M,N,
(Ⅰ)設(shè)直線AP,BP的斜率分別為k1,k2,求證:k1•k2為定值;
(Ⅱ)求線段MN的長(zhǎng)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案