17.命題:“?x>0,x2-x≥0”的否定形式是(  )
A.?x≤0,x2-x>0B.?x>0,x2-x≤0C.?x≤0,x2-x>0D.?x>0,x2-x<0

分析 通常像“所有”、“任意”、“每一個(gè)”等表示全體的量詞在邏輯中稱為全稱量詞,通常用符號(hào)“?x”表示“對(duì)任意x”;“有一個(gè)”、“有些”、“存在一個(gè)”等表示部分的量詞在邏輯中稱為存在量詞,通常用符號(hào)“?x”表示“存在x”.

解答 解:命題p:?x∈R,x2-x≥0的否定形式是特稱命題;
“?x∈R,x2-x<0”.
故選:D

點(diǎn)評(píng) 含有全稱量詞的命題就稱為全稱命題,含有存在量詞的命題稱為特稱命題.一般形式為:全稱命題:?x∈M,p(x);特稱命題?x∈M,p(x).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知直線l:x-y+3=0與圓C:(x+1)2+y2=2,則直線l與圓C的位置關(guān)系為相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.過P(-4,1)的直線l與雙曲線$\frac{x^2}{4}-{y^2}=1$僅有一個(gè)公共點(diǎn),則這樣的直線l有(  )條.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x2+ax+3
(1)當(dāng)x∈R時(shí),f(x)≥2恒成立,求a的取值范圍;
(2)當(dāng)x∈R時(shí),g(x)=f(2x).
①求g(x)的值域;
②若g(x)≤a有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=x2+sinx的導(dǎo)函數(shù)y′=2x+cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為   ρsin2θ=2cosθ,過點(diǎn)P(-2,-4)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2-\frac{\sqrt{2}}{2}t}\\{y=-4-\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),直線l與曲線C相交于A,B兩點(diǎn).
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(Ⅱ)求證:|PA|•|PB|=|AB|2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x3+ax2+3x-9.
(1)若函數(shù)f(x)在x=-3時(shí)取得極值,求函數(shù)f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若函數(shù)f(x)在區(qū)間[1,2]上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\vec a=({1,2-x})$,$\vec b=({1+x,2})$.
(1)若$\vec a∥\vec b$,求x的值;
(2)當(dāng)x∈[0,2]時(shí),求$\vec a•({\vec a-\vec b})$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知關(guān)于x的方程x2-(m+2)x-m+1=0有兩個(gè)不等實(shí)根,則m的取值范圍是(-∞,-8)∪(0,+∞)(用區(qū)間表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案