6.已知數(shù)列{an}的前4項(xiàng)為11,102,1003,10004,…,則它的一個(gè)通項(xiàng)公式為${a}_{n}={10}^{n}+n$.

分析 利用前幾項(xiàng),發(fā)現(xiàn)其規(guī)律,即可得出結(jié)論.

解答 解:由題意,11=10+1,102=102+2,1003=103+3,10004=104+4,
∴它的一個(gè)通項(xiàng)公式為${a}_{n}={10}^{n}+n$.
故答案為${a}_{n}={10}^{n}+n$.

點(diǎn)評 本題考查數(shù)列的通項(xiàng),考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=sin2x-2$\sqrt{3}$sin2x的最大值為2-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,
(1)求由$\left\{\begin{array}{l}0≤x≤\frac{5π}{12}\\ 0≤y≤f(x)\end{array}$,確定的區(qū)域的面積;
(2)如何由函數(shù)y=sinx的圖象通過相應(yīng)的平移與伸縮變換得到函數(shù)f(x)的圖象,寫出變換過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若log2x=-log2(2y),則x+2y的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在邊長為1的正方形ABCD中,向量$\overrightarrow{DE}=\frac{1}{2}\overrightarrow{DC},\overrightarrow{BF}=\frac{1}{3}\overrightarrow{BC}$,則向量$\overrightarrow{AE},\overrightarrow{AF}$的夾角為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某零件的正視圖與側(cè)視圖均是如圖所示的圖形(實(shí)線組成半徑為2cm的半圓,虛線是底邊上高為1cm的等腰三角形的兩腰),俯視圖是一個(gè)半徑為2cm的圓(包括圓心),則該零件的體積是( 。
A.$\frac{4}{3}πc{m^3}$B.$\frac{8}{3}πc{m^3}$C.4πcm3D.$\frac{20}{3}πc{m^3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)上一點(diǎn)C,過雙曲線中心的直線交雙曲線于A,B兩點(diǎn),設(shè)直線AC,BC的斜率分別為k1,k2,則當(dāng)$\frac{2}{{{k_1}{k_2}}}+ln{k_1}+ln{k_2}$最小時(shí),雙曲線的離心率為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.“a,b都是偶數(shù)”是“a+b是偶數(shù)”的充分不必要條件.(從“充分必要”,“充分不必要”,“必要不分”,“既不充分也不必要”中選擇適當(dāng)?shù)奶顚懀?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知cos2A-3cos(B+C)=1.
(1)求角A的大;
(2)若△ABC的面積$S=5\sqrt{3}$,b=5,求sinBsinC的值;
(3)若a=1,求△ABC的周長l的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案