[2013·湖南高考]已知正方體的棱長(zhǎng)為1,其俯視圖是一個(gè)面積為1的正方形,側(cè)視圖是一個(gè)面積為的矩形,則該正方體的正視圖的面積等于(  )

A. B.1 C. D.

 

D

【解析】由題意可知該正方體的放置如圖所示,側(cè)視圖的方向垂直于面BDD1B1,正視圖的方向垂直于面A1C1CA,且正視圖是長(zhǎng)為,寬為1的矩形,故正視圖的面積為,因此選D.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:8-9圓錐曲線的綜合問(wèn)題(解析版) 題型:選擇題

[2012·課標(biāo)全國(guó)卷]等軸雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,C與拋物線y2=16x的準(zhǔn)線交于A,B兩點(diǎn),|AB|=4,則C的實(shí)軸長(zhǎng)為(  )

A. B.2 C.4 D.8

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:8-1直線的傾斜角與斜率、直線方程(解析版) 題型:選擇題

[2014·長(zhǎng)春三校調(diào)研]一次函數(shù)y=-x+的圖象同時(shí)經(jīng)過(guò)第一、三、四象限的必要不充分條件是(  )

A.m>1,且n<1 B.mn<0

C.m>0,且n<0 D.m<0,且n<0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-4直線、平面平行的判定及性質(zhì)(解析版) 題型:填空題

[2014·長(zhǎng)春質(zhì)檢]如圖,四棱錐P-ABCD的底面是一直角梯形,AB∥CD,BA⊥AD,CD=2AB,PA⊥底面ABCD,E為PC的中點(diǎn),則BE與平面PAD的位置關(guān)系為_(kāi)_______.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-3空間點(diǎn)、直線、平面之間的位置關(guān)系(解析版) 題型:選擇題

[2013·東城模擬]如圖,在四面體ABCD中,若截面PQMN是正方形,則在下列命題中,錯(cuò)誤的為(  )

A.AC⊥BD

B.AC∥截面PQMN

C.AC=BD

D.異面直線PM與BD所成的角為45°

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-1空間幾何體結(jié)構(gòu)及三視圖和直觀圖(解析版) 題型:選擇題

[2013·寧波質(zhì)檢]如圖,水平放置的三棱柱的側(cè)棱長(zhǎng)和底邊長(zhǎng)均為2,且側(cè)棱AA1⊥平面A1B1C1,正視圖是正方形,俯視圖是正三角形,該三棱柱的側(cè)視圖面積為(  )

A.2 B. C.2 D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:6-5合情推理與演繹推理(解析版) 題型:填空題

[2012·湖北高考]回文數(shù)是指從左到右讀與從右到左讀都一樣的正整數(shù).如22,121,3443,94249等.顯然2位回文數(shù)有9個(gè):11,22,33,…,99.3位回文數(shù)有90個(gè):101,111,121,…,191,202,…,999.則

(1)4位回文數(shù)有________個(gè);

(2)2n+1(n∈N*)位回文數(shù)有________個(gè).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:6-2一元二次不等式及其解法(解析版) 題型:選擇題

[2013·浙江高考]已知a,b,c∈R,函數(shù)f(x)=ax2+bx+c.若f(0)=f(4)>f(1),則(  )

A.a>0,4a+b=0 B.a<0,4a+b=0

C.a>0,2a+b=0 D.a<0,2a+b=0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:4-3平面向量的數(shù)量積及應(yīng)用(解析版) 題型:選擇題

[2014·大同調(diào)研]已知向量a,b滿足|a|=5,|b|=4,|b-a|=,則a與b的夾角θ=(  )

A.150° B.120° C.60° D.30°

 

查看答案和解析>>

同步練習(xí)冊(cè)答案