【題目】甲、乙兩人進(jìn)行象棋比賽,采取五局三勝制(不考慮平局,先贏得三場(chǎng)的人為獲勝者,比賽結(jié)束).根據(jù)前期的統(tǒng)計(jì)分析,得到甲在和乙的第一場(chǎng)比賽中,取勝的概率為0.5,受心理方面的影響,前一場(chǎng)比賽結(jié)果會(huì)對(duì)甲的下一場(chǎng)比賽產(chǎn)生影響,如果甲在某一場(chǎng)比賽中取勝,則下一場(chǎng)取勝率提高0.1,反之,降低0.1.則甲以3:1取得勝利的概率為( )

A.0.162B.0.18C.0.168D.0.174

【答案】D

【解析】

設(shè)甲在第一、二、三、四局比賽中獲勝分別為事件,則所求概率,再根據(jù)概率的計(jì)算公式即可求得答案.

解:設(shè)甲在第一、二、三、四局比賽中獲勝分別為事件,

由題意,甲要以3:1取得勝利可能是,,,

∴由概率得,甲以3:1取得勝利的概率

,

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,將曲線(為參數(shù)) 上任意一點(diǎn)經(jīng)過(guò)伸縮變換后得到曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為

1)求直線的普通方程和曲線的直角坐標(biāo)方程;

2)設(shè)直線與曲線交于兩點(diǎn),,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求的最小值;

2)若,討論的單調(diào)性;

3)若上的最小值,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在區(qū)間單調(diào)遞增,下述三個(gè)結(jié)論:①的取值范圍是;②存在零點(diǎn);③至多有4個(gè)極值點(diǎn).其中所有正確結(jié)論的編號(hào)是( )

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】生活中人們常用“通五經(jīng)貫六藝”形容一個(gè)人才識(shí)技藝過(guò)人,這里的“六藝”其實(shí)源于中國(guó)周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”. 為弘揚(yáng)中國(guó)傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動(dòng)中開展了“六藝”知識(shí)講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須相鄰安排的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的右準(zhǔn)線為直線,左頂點(diǎn)為,右焦點(diǎn)為. 已知斜率為2的直線經(jīng)過(guò)點(diǎn),與橢圓相交于兩點(diǎn),且到直線的距離為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若過(guò)的直線與直線分別相交于兩點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,平面平面,為正三角形,為線段的中點(diǎn).

1)證明:平面平面;

2)若與平面所成角的大小為60°,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面為平行四邊形,底面,,,.

(Ⅰ)求證:平面平面;

(Ⅱ)在側(cè)棱上是否存在點(diǎn)E,使與底面所成的角為45°?若存在,求的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】年新型冠狀病毒疫情爆發(fā),貴州省教育廳號(hào)召全體學(xué)生“停課不停學(xué)”.自日起,高三年級(jí)學(xué)生通過(guò)收看“陽(yáng)光校園·空中黔課”進(jìn)行線上網(wǎng)絡(luò)學(xué)習(xí).為了檢測(cè)線上網(wǎng)絡(luò)學(xué)習(xí)效果,某中學(xué)隨機(jī)抽取名高三年級(jí)學(xué)生做“是否準(zhǔn)時(shí)提交作業(yè)”的問卷調(diào)查,并組織了一場(chǎng)線上測(cè)試,調(diào)查發(fā)現(xiàn)有名學(xué)生每天準(zhǔn)時(shí)提交作業(yè),根據(jù)他們的線上測(cè)試成績(jī)得頻率分布直方圖(如圖所示);另外名學(xué)生偶爾沒有準(zhǔn)時(shí)提交作業(yè),根據(jù)他們的線上測(cè)試成績(jī)得莖葉圖(如圖所示,單位:分)

1)成績(jī)不低于分為等,低于分為非等.完成以下列聯(lián)表,并判斷是否有以上的把握認(rèn)為成績(jī)?nèi)〉?/span>等與每天準(zhǔn)時(shí)提交作業(yè)有關(guān)?

準(zhǔn)時(shí)提交作業(yè)與成績(jī)等次列聯(lián)表

單位:人

A

A

合計(jì)

每天準(zhǔn)時(shí)提交作業(yè)

偶爾沒有準(zhǔn)時(shí)提交作業(yè)

合計(jì)

2)成績(jī)低于分為不合格,從這名學(xué)生里成績(jī)不合格的學(xué)生中再抽取人,其中每天準(zhǔn)時(shí)提交作業(yè)的學(xué)生人數(shù)為,求的分布列與數(shù)學(xué)期望.

附:

查看答案和解析>>

同步練習(xí)冊(cè)答案