【題目】在平面直角坐標(biāo)系中,將曲線(為參數(shù)) 上任意一點(diǎn)經(jīng)過伸縮變換后得到曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線交于兩點(diǎn),,求的值.
【答案】(1)的直角坐標(biāo)方程為,的普通方程為;(2)
【解析】
(1)先求出曲線的參數(shù)方程,然后消去參數(shù),即可求出曲線的直角坐標(biāo)方程;由,,能求出直線的普通方程;
(2)求出直線的參數(shù)方程,并代入,得到,由此借助韋達(dá)定理即可求出的值.
(1)設(shè)曲線上任意一點(diǎn),則有,
消去得,
所以,曲線的直角坐標(biāo)方程為.
由,得的普通方程為.
(2)直線的參數(shù)方程為(為參數(shù)),將其代入,
得,即,
設(shè)對(duì)應(yīng)的參數(shù)分別為,則,
因?yàn)?/span>,
所以,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦點(diǎn)為,,P是橢圓C上一點(diǎn).若橢圓C的離心率為,且,的面積為.
(1)求橢圓C的方程;
(2)已知O是坐標(biāo)原點(diǎn),向量,過點(diǎn)(2,0)的直線l與橢圓C交于M,N兩點(diǎn).若點(diǎn)滿足,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)3,g(x)=alnx﹣2x(a∈R).
(1)討論g(x)的單調(diào)性;
(2)是否存在實(shí)數(shù)a,使不等式f(x)≥g(x)恒成立?如果存在,求出a的值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且asinB=bsin(A+).
(1)求A;
(2)若b,a,c成等差數(shù)列,△ABC的面積為2,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四面體ABCD中,AC=6,BA=BC=5,AD=CD=3 .
(1)求證:AC⊥BD;
(2)當(dāng)四面體ABCD的體積最大時(shí),求點(diǎn)A到平面BCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐中,底面為正方形,為正三角形,是的中點(diǎn),過的平面平行于平面,且平面與平面的交線為,與平面的交線為.
(1)在圖中作出四邊形(不必說出作法和理由);
(2)若,四棱錐的體積為,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().其中常數(shù)是自然對(duì)數(shù)的底數(shù).
(1)若,求在上的極大值點(diǎn);
(2)(i)證明在上單調(diào)遞增;
(ii)求關(guān)于x的方程在上的實(shí)數(shù)解的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),我國(guó)電子商務(wù)行業(yè)迎來(lái)了蓬勃發(fā)展的新機(jī)遇,但是電子商務(wù)行業(yè)由于缺乏監(jiān)管,服務(wù)質(zhì)量有待提高.某部門為了對(duì)本地的電商行業(yè)進(jìn)行有效監(jiān)管,調(diào)查了甲、乙兩家電商的某種同類產(chǎn)品連續(xù)十天的銷售額(單位:萬(wàn)元),得到如下莖葉圖:
甲 | 乙 | |||||
7 | 5 | 10 | 7 | |||
9 | 5 | 3 | 11 | 5 | 7 | 8 |
8 | 6 | 12 | 3 | 5 | ||
4 | 2 | 13 | 2 | 6 | 9 | |
1 | 14 | 8 |
(1)根據(jù)莖葉圖判斷甲、乙兩家電商對(duì)這種產(chǎn)品的銷售誰(shuí)更穩(wěn)定些?
(2)為了綜合評(píng)估本地電商的銷售情況,從甲、乙兩家電商十天的銷售數(shù)據(jù)中各抽取兩天的銷售數(shù)據(jù),其中銷售額不低于120萬(wàn)元的天數(shù)分別記為,令,求隨機(jī)變量Y的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人進(jìn)行象棋比賽,采取五局三勝制(不考慮平局,先贏得三場(chǎng)的人為獲勝者,比賽結(jié)束).根據(jù)前期的統(tǒng)計(jì)分析,得到甲在和乙的第一場(chǎng)比賽中,取勝的概率為0.5,受心理方面的影響,前一場(chǎng)比賽結(jié)果會(huì)對(duì)甲的下一場(chǎng)比賽產(chǎn)生影響,如果甲在某一場(chǎng)比賽中取勝,則下一場(chǎng)取勝率提高0.1,反之,降低0.1.則甲以3:1取得勝利的概率為( )
A.0.162B.0.18C.0.168D.0.174
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com