分析 運用$\frac{1}{(n+1)(2n+1)}$<$\frac{1}{2n(n+1)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+1}$),將原不等式的左邊從第二項開始放縮,由不等式的性質(zhì)即可得證.
解答 證明:由$\frac{1}{(n+1)(2n+1)}$<$\frac{1}{2n(n+1)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+1}$),
可得$\frac{1}{2×3}$+$\frac{1}{3×5}$+…+$\frac{1}{(n+1)(2n+1)}$<$\frac{1}{6}$+$\frac{1}{2}$($\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)
=$\frac{1}{6}$+$\frac{1}{2}$($\frac{1}{2}$-$\frac{1}{n+1}$)=$\frac{5}{12}$-$\frac{1}{2(n+1)}$<$\frac{5}{12}$.
則原不等式成立.
點評 本題考查不等式的證明,注意運用裂項相消和放縮法,考查推理和運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 甲 丙 | B. | 乙 丁 | C. | 丙 丁 | D. | 乙 丙 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 函數(shù)f(x)的最小正周期為π | |
B. | 函數(shù)f(x)的圖象關(guān)于直線x=$\frac{π}{3}$對稱$ | |
C. | 函數(shù)f(x)在區(qū)間[0,$\frac{π}{4}$]上是增函數(shù) | |
D. | 函數(shù)f(x)的圖象可由g(x)=2sin2x-1的圖象向右平移$\frac{π}{6}$個單位得到 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com