1.老師帶甲乙丙丁四名學(xué)生去參加自主招生考試,考試結(jié)束后老師向四名學(xué)生了解考試情況,
四名學(xué)生回答如下:
甲說(shuō):“我們四人都沒(méi)考好”;             
乙說(shuō):“我們四人中有人考的好”;
丙說(shuō):“乙和丁至少有一人沒(méi)考好”;       
丁說(shuō):“我沒(méi)考好”.
結(jié)果,四名學(xué)生中有兩人說(shuō)對(duì)了,則四名學(xué)生中( 。 兩人說(shuō)對(duì)了.
A.甲 丙B.乙 丁C.丙 丁D.乙 丙

分析 判斷甲與乙的關(guān)系,通過(guò)對(duì)立事件判斷分析即可.

解答 解:甲與乙的關(guān)系是對(duì)立事件,二人說(shuō)的話矛盾,必有一對(duì)一錯(cuò),如果丁正確,則丙也是對(duì)的,所以丁錯(cuò)誤,可得丙正確,此時(shí),乙正確.
故答案為:乙、丙.

點(diǎn)評(píng) 解答此類問(wèn)題,有時(shí)要用到假設(shè)法,通過(guò)推理論證,得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若復(fù)數(shù)(1-i)(2+bi)是純虛數(shù),則實(shí)數(shù)b=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.一個(gè)等比數(shù)列的前4項(xiàng)之和為前2項(xiàng)之和的2倍,則這個(gè)數(shù)列的公比是( 。
A.$\frac{1}{2}$或-$\frac{1}{2}$B.1C.1或-1D.2或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.0<P(B)<1,且P((A1+A2)|B)=P(A1|B)+P(A2|B),則下列選項(xiàng)中,成立的是( 。
A.P((A1+A2)|$\overline{B}$)=P(A1|$\overline{B}$)+P(A2|$\overline{B}$)B.P(A1B+A2B)=P(A1B)+P(A2B)
C.P(A1+A2)=P(A1|B)+P(A2|B)D.P(B)=P(A1)P(B|A1)+P(A2)P(B|A2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖,在正方體ABCD-A1B1C1D1中,E、F分別為BC、BB1的中點(diǎn),則下列直線中與直線EF相交的是( 。
A.直線AA1B.直線A1B1C.直線A1D1D.直線B1C1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知正實(shí)數(shù)a,b,c,d滿足a+b+c+d=1.
求證:$\sqrt{1+2a}$+$\sqrt{1+2b}$+$\sqrt{1+2c}$+$\sqrt{1+2d}$≤2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知實(shí)數(shù)a、b滿足:a>0,b>0.
(1)若x∈R,求證:|x+a|+|x-b|≥2$\sqrt{ab}$.
(2)若a+b=1,求證:$\frac{1}{a}$+$\frac{1}$+$\frac{2}{ab}$≥12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)x>0.
(1)證明:${e^x}>1+x+\frac{1}{2}{x^2}$;
(2)若${e^x}=1+x+\frac{1}{2}{x^2}{e^y}$,證明:0<y<x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.證明:$\frac{1}{2×3}+\frac{1}{3×5}+…+\frac{1}{(n+1)(2n+1)}<\frac{5}{12}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案