3.在公差不為零的等差數(shù)列{an}中,a1=2,且a1,a2,a4成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)令bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$(n∈N*),求數(shù)列{bn}的前n項和Tn

分析 (Ⅰ)由等比數(shù)列等比中項可知:(a1+d)2=a1•(a1+3d),即可求得d的值,根據(jù)等差通項公式即可求得數(shù)列{an}的通項公式;
(Ⅱ)${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$=$\frac{1}{2n•2(n+1)}$=$\frac{1}{4n(n+1)}$=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),利用“裂項法”即可求得數(shù)列{bn}的前n項和Tn

解答 解:(Ⅰ)設數(shù)列{an}的公差為d(d≠0),…(1分)
由題意知(a1+d)2=a1•(a1+3d),…(2分)
即(2+d)2=2•(2+3d),即d(d-2)=0,
又d≠0,
∴d=2.…(3分)
an=2+(n-1)×2=2n,
故數(shù)列{an}的通項公式an=2n.  …(5分)
(Ⅱ)由(Ⅰ)得${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$=$\frac{1}{2n•2(n+1)}$=$\frac{1}{4n(n+1)}$=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$)…(7分)
∴Tn=b1+b2+b3+…+bn,…(8分)
=$\frac{1}{4}$[(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$)]…(9分)
=$\frac{1}{4}$(1-$\frac{1}{n+1}$)   …(10分)
=$\frac{n}{4(n+1)}$.    …(11分)
∴數(shù)列數(shù)列{bn}的前n項和Tn=$\frac{n}{4(n+1)}$. …(12分)

點評 本題考查等差數(shù)列通項公式,等比數(shù)列等比中項的性質(zhì),“裂項法”求數(shù)列的前n項和,考查計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.以正方體的頂點為頂點的四面體個數(shù)有58.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.函數(shù)y=${(\frac{2016}{2017})^x}-{x^{\frac{1}{2}}}$的零點的個數(shù)為(  )
A.2B.0C.1D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=x+$\frac{a^2}{x}$,g(x)=x+lnx,其中a≥1.
(1)若x=2是函數(shù)f(x)的極值點,求h(x)=f(x)+g(x)在(1,h(1))處的切線方程;
(2)若對任意的x1,x2∈[1,e](e為自然對數(shù)的底數(shù))都有f(x1)≥g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.某初級中學有學生270人,其中一年級108人,二、三年級各81人,現(xiàn)要利用抽樣方法抽取10人參加某項調(diào)查,考慮選用簡單隨機抽樣、分層抽樣和系統(tǒng)抽樣三種方案,使用簡單隨機抽樣和分層抽樣時,將學生按一、二、三年級依次統(tǒng)一編號為1,2,…,270;使用系統(tǒng)抽樣時,將學生統(tǒng)一隨機編號1,2,…,270,并將整個編號依次分為10段.如果抽得號碼有下列四種情況:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270;
關于上述樣本的下列結(jié)論中,正確的是(  )
A.②、③都不能為系統(tǒng)抽樣B.②、④都不能為分層抽樣
C.①、④都可能為系統(tǒng)抽樣D.①、③都可能為分層抽樣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y-3=0}\\{x-y+1=0}\\{y≥1}\end{array}\right.$,則z=$\frac{2y}{x}$的最小值是( 。
A.-1B.0C.1D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設f(x)是定義在區(qū)間[-2,2]上的奇函數(shù),命題p:f(x)在[0,2]上單調(diào)遞減,命題q:f(1-m)≥f(m).若“¬p或q”為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在RT△ABC中,∠BCA=90°,AC=BC=6,M斜邊AB的中點,N為AB上一點,MN=2$\sqrt{2}$,則$\overrightarrow{CM}$•$\overrightarrow{CN}$的值為(  )
A.18 $\sqrt{2}$B.16C.24D.18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知集合A={x|ax2+2ax+3<0},若A=∅,則實數(shù)a的集合為( 。
A.{a|0<a<3}B.{a|0≤a<3}C.{a|0<a≤3}D.{a|0≤a≤3}

查看答案和解析>>

同步練習冊答案