已知函數(shù)f(x)=kx2+(3+k)x+3,其中k為常數(shù),且滿(mǎn)足f(2)=3
(1)求函數(shù)f(x)的表達(dá)式;
(2)求函數(shù)f(x)在[-1,4]上的最大值和最小值;
(3)設(shè)函數(shù)g(x)=f(x)-mx,若g(x)在區(qū)間[-2,2]上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍.
考點(diǎn):二次函數(shù)在閉區(qū)間上的最值,函數(shù)解析式的求解及常用方法
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由函數(shù)f(x)滿(mǎn)足f(2)=6k+9=3,求得 k=-1,從而得到 f(x)的解析式.
(2)根據(jù)f(x)=-(x-1)2+4,x∈[-1,4],利用二次函數(shù)的性質(zhì)求得函數(shù)f(x)在[-1,4]上的最大值和最小值.
(3)根據(jù)函數(shù)g(x)=-x2+(2-m)x+3 的圖象的對(duì)稱(chēng)軸方程為x=1-
m
2
,g(x)在區(qū)間[-2,2]上是單調(diào)函數(shù),可得1-
m
2
≥2,或1-
m
2
≤-2,由此求得實(shí)數(shù)m的取值范圍.
解答: 解:(1)∵函數(shù)f(x)=kx2+(3+k)x+3,其中k為常數(shù),且滿(mǎn)足f(2)=6k+9=3,可得 k=-1,
∴f(x)=-x2+2x+3.
(2)∵f(x)=-x2+2x+3=-(x-1)2+4,x∈[-1,4],∴當(dāng)x=1時(shí),函數(shù)取得最大值為4;
當(dāng)x=4時(shí),函數(shù)取得最小值為-5.
(3)由于函數(shù)g(x)=f(x)-mx=-x2+(2-m)x+3 的圖象的對(duì)稱(chēng)軸方程為x=1-
m
2
,
若g(x)在區(qū)間[-2,2]上是單調(diào)函數(shù),則1-
m
2
≥2,或1-
m
2
≤-2,
求得m≤-2,或m≥6,即實(shí)數(shù)m的取值范圍為{m|m≤-2,或m≥6}.
點(diǎn)評(píng):本題主要考查用待定系數(shù)法求函數(shù)的解析式,求二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了分類(lèi)討論的數(shù)學(xué)思想,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列不等式(1)m-3>m-5;(2)5-m>3-m;(3)5m>3m;(4)5+m>5-m其中正確的有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為  
x=
3
coxα
y=sinα
(α為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為ρsin(θ+
π
4
)=4
2

(1)求曲線(xiàn)C1的普通方程與曲線(xiàn)C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線(xiàn)C1上的動(dòng)點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某城市為保護(hù)環(huán)境,維護(hù)水資源,鼓勵(lì)市民家庭節(jié)約用水,作出了如下規(guī)定:每月用水不超過(guò)4噸,按每噸2元收取消費(fèi);每月超過(guò)4噸,超過(guò)部分加倍收費(fèi),某市民家庭某月繳費(fèi)20元,則該市民家庭這個(gè)月實(shí)際用水( 。
A、7噸B、8噸C、9噸D、10噸

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于任意的實(shí)數(shù)a和b,定義一種新的運(yùn)算“□”:a□b=
a,a-b≤0
b,a-b>0
,設(shè)函數(shù)f(x)=(x2-3x)□(x+12)(x∈R),若函數(shù)y=f(x)-k的圖象與橫軸只有一個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若圓的一條直徑的端點(diǎn)是A(1,0),B(5,0),則此圓的方程是( 。
A、(x-3)2+y2=2
B、(x-1)2+y2=4
C、(x-3)2+y2=4
D、(x-1)2+y2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x3+
1
x
是( 。
A、奇函數(shù)B、偶函數(shù)
C、既奇又偶函數(shù)D、非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面四個(gè)結(jié)論:
①偶函數(shù)的圖象一定與y軸相交;
②奇函數(shù)的圖象一定通過(guò)原點(diǎn);
③偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);
④既是奇函數(shù)又是偶函數(shù)的函數(shù)一定是f(x)=0(定義域關(guān)于原點(diǎn)對(duì)稱(chēng));
其中正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,a6=5,而且a3+a8=5,求:
(1)a1和公差d;
(2)前18項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案