【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD垂直于底面ABCD,AD=PD=2,
E、F分別為CD、PB的中點.
(1)求證:EF⊥平面PAB;
(2)設(shè),求直線AC與平面AEF所成角θ的正弦值.
【答案】(1)見解析;(2)
【解析】
(1)求出直線EF所在的向量,再求出平面內(nèi)兩條相交直線所在的向量,然后利用向量的數(shù)量積為0,根據(jù)線面垂直的判定定理得到線面垂直.
(2)求出平面的法向量以及直線所在的向量,再利用向量的有關(guān)運算求出兩個向量的夾角,進(jìn)而轉(zhuǎn)化為線面角,即可解決問題.
解:以D為從標(biāo)原點,DC、DA、DP所在直線分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系D-xyz.設(shè)AB=a,
則A(0,2,0),B(a,2,0),C(a,0,0),D(0,0,0,),p(0,0,2),
(1)由題意可得:=0×0+1×2+1×(-2)=0,=0×a+1×2+1×(-2)=0
∴EF⊥PA,EF⊥PB.
∴EF⊥平面PAB.
(2)AB=2=(0,1,1).
設(shè)平面AEF的法向量,
則
令y=1,則x=,所以
又.
所以sinθ= .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某商品在過去20天的日銷售量和日銷售價格均為銷售時間t(天)的函數(shù),日銷售量(單位:件)近似地滿足: ,日銷售價格(單位:元)近似地滿
足:
(I)寫出該商品的日銷售額S關(guān)于時間t的函數(shù)關(guān)系;
(Ⅱ)當(dāng)t等于多少時,日銷售額S最大?并求出最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司將進(jìn)貨單價為8元一個的商品按10元一個出售,每天可以賣出100個,若這種商品的售價每個上漲1元,則銷售量就減少10個.
(1)求售價為13元時每天的銷售利潤;
(2)求售價定為多少元時,每天的銷售利潤最大,并求最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)為了調(diào)查居民的生活水平,隨機從小區(qū)住戶中抽取個家庭,得到數(shù)據(jù)如下:
家庭編號 | 1 | 2 | 3 | 4 | 5 | 6 |
月收入x(千元) | 20 | 30 | 35 | 40 | 48 | 55 |
月支出y(千元) | 4 | 5 | 6 | 8 | 8 | 11 |
參考公式:回歸直線的方程是:,其中, .
(1)據(jù)題中數(shù)據(jù),求月支出(千元)關(guān)于月收入(千元)的線性回歸方程(保留一位小數(shù));
(2)從這個家庭中隨機抽取個,求月支出都少于萬元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調(diào)研可知:甲城市收益P與投入(單位:萬元)滿足,乙城市收益Q與投入(單位:萬元)滿足,設(shè)甲城市的投入為(單位:萬元),兩個城市的總收益為(單位:萬元).
(1)當(dāng)甲城市投資50萬元時,求此時公司總收益;
(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合Z={(x,y)|x∈[0,2],y∈[-1,1]}.
(1)若x,y∈Z,求x+y≥0的概率;
(2)若x,y∈R,求x+y≥0的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,底面是邊長為2的菱形,,四邊形是矩形,和分別是和的中點.
(1)求證:平面平面;
(2)若平面平面,,求平面與平面所成角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com