【題目】已知集合Z={(x,y)|x∈[0,2],y[-1,1]}.

(1)若x,yZ,求x+y≥0的概率;

(2)若x,yR,求x+y≥0的概率.

【答案】(1) (2)

【解析】

試題分析:(1)因?yàn)閤,yZ,且x[0,2],y[-1,1],基本事件是有限的,所以為古典概型,這樣求得總的基本事件的個(gè)數(shù),再求得滿足x,yZ,x+y0的基本事件的個(gè)數(shù),然后求比值即為所求的概率;(2)因?yàn)閤,yR,且圍成面積,則為幾何概型中的面積類型,先求x,yZ,求x+y0表示的區(qū)域的面積,然后求比值即為所求的概率

試題解析:(1)設(shè)“x+y≥0,x,yZ”為事件Ax,yZ,x[02],即x=0,1,2;y∈[-1,1]即y=-1,01.

則基本事件有:(0,-1)(0,0)(0,1),(1-1),(1,0),(11),(2,-1),(20),(2,1)共9個(gè).其中滿足“x+y≥0”的基本事件有8個(gè),P(A)=.

故xyZ,x+y≥0的概率為.

(2)設(shè)“x+y≥0,xyR為事件B,

x[0,2]y[-1,1]

基本事件為如圖四邊形ABCD區(qū)域,事件B包括的區(qū)域?yàn)槠渲械年幱安糠?/span>.

P(B)=,故x,yRx+y≥0的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題實(shí)數(shù)滿足其中,命題實(shí)數(shù)滿足

1,且為真,求實(shí)數(shù)的取值范圍;

2的充分不必要條件,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為坐標(biāo)原點(diǎn),已知橢圓的離心率為,拋物線的準(zhǔn)線方程為

1求橢圓和拋物線的方程;

2設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),若在以為直徑的圓的外部,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了對(duì)某課題進(jìn)行研究,用分層抽樣方法從三所高校的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人)

高校

相關(guān)人數(shù)

抽取人數(shù)

A

18

B

36

2

C

54

)求;

)若從高校抽取的人中選2人作專題發(fā)言,求這二人都來自高校的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】語文成績服從正態(tài)分布,數(shù)學(xué)成績的頻率分布直方圖如下:

I如果成績大于135的為特別優(yōu)秀,這500名學(xué)生中本次考試語文、數(shù)學(xué)特別優(yōu)秀的大約各多少人?假設(shè)數(shù)學(xué)成績在頻率分布直方圖中各段是均勻分布的

II如果語文和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,從I中的這些同學(xué)中隨機(jī)抽取3人,設(shè)三人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學(xué)期望

附參考公式,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題P;實(shí)數(shù)x滿足x2-4ax+3a2<0,其中a>0;命題q:實(shí)數(shù)x滿足x2-5x+60

(1)若a=1,且為真命題,求實(shí)數(shù)x的取值范圍。

(2)若p是q成立的必要不充分條件,求實(shí)數(shù)a 的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知yf(x)是定義在R上的奇函數(shù),x<0時(shí)f(x)12x.

(1)求函數(shù)f(x)的解析式;

(2)畫出函數(shù)f(x)的圖像;

(3)寫出函數(shù)f(x)的單調(diào)區(qū)間及值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:數(shù)列對(duì)一切正整數(shù)均滿足,稱數(shù)列凸數(shù)列,以下關(guān)于凸數(shù)列的說法:

等差數(shù)列一定是凸數(shù)列;

首項(xiàng),公比的等比數(shù)列一定是凸數(shù)列;

若數(shù)列為凸數(shù)列,則數(shù)列是單調(diào)遞增數(shù)列;

若數(shù)列為凸數(shù)列,則下標(biāo)成等差數(shù)列的項(xiàng)構(gòu)成的子數(shù)列也為凸數(shù)列

其中正確說法的序號(hào)是_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,點(diǎn)為拋物線上一點(diǎn).

(1)求的方程;

(2)若點(diǎn)上,過的兩弦,若,求證: 直線過定點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案