【題目】已知函數(shù) ,

(1)若曲線在點處的切線為,求的值;

(2)討論函數(shù)的單調性;

(3)設函數(shù),若至少存在一個,使得成立,求實數(shù)的取值范

【答案】(1);(2)當時,增區(qū)間為;當時,增區(qū)間為,減區(qū)間為;當時,增區(qū)間為,減區(qū)間為;(3)

【解析】

試題分析:(1)首先求得的定義域及導函數(shù),然后利用導數(shù)的幾何意義求解即可;(2)分、、討論的導函數(shù)與0的關系,由此求得函數(shù)的單調區(qū)間;(3)首先根據條件將問題轉化為有解,然后令,從而通過求導得到函數(shù)的單調性,并求得其最小值,進而求得實數(shù)的取值范.

試題解析:(1)的定義域為,

,,

解得,

(2)

時,,的單調增區(qū)間為

時,由,

的單調增區(qū)間為

,的單調減區(qū)間為.

時,由,的單調減區(qū)間為,

,的單調減區(qū)間為.

綜上所述:當時, ,的單調增區(qū)間為

時,的單調增區(qū)間為,,的單調減區(qū)間為

時,的單調增區(qū)間為,的單調減區(qū)間為.

(3)若至少存在一個,使得,

時,,有解,令,

上單調遞減,

得,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為實數(shù)且.

(1)設函數(shù).時,在其定義域內為單調增函數(shù),求的取值范圍;

(2)設函數(shù).時,在區(qū)間(其中為自然對數(shù)的底數(shù))上是否存在實數(shù),使得成立,若存在,求實數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個家庭有兩個小孩,把第一個孩子的性別寫在前邊,第二個孩子的性別寫在后邊,則所有的樣本點有(

A.(男,女),(男,男),(女,女)

B.(男,女),(女,男)

C.(男,男),(男,女),(女,男),(女,女)

D.(男,男),(女,女)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高一(1)班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如下圖.

(1)求分數(shù)在的頻率及全班人數(shù);

(2)求分數(shù)在之間的頻數(shù),并計算頻率分布直方圖中間矩形的高;

(3)若要從分數(shù)在之間的試卷中任取兩份分析學生失分情況,求在抽取的試卷中,至少有一份分數(shù)在之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】單調遞增數(shù)列中, ,且成等差數(shù)列, 成等比數(shù)列,.

(1)求證:數(shù)列為等差數(shù)列

求數(shù)列通項公式;

(2)設數(shù)列的前項和為,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知直線的參數(shù)方程為為參數(shù),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,且曲線的左焦點在直線上.

1若直線與曲線交于兩點,求的值;

2求曲線的內接矩形的周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列判斷:①一條直線和一點確定一個平面;②兩條直線確定一個平面;③三角形和梯形一定是平面圖形;④三條互相平行的直線一定共面其中正確的是_______.(寫出所有正確判斷的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將一顆質地均勻的骰子先后拋擲2次,觀察其向上的點數(shù),分別記為

(1)若記“”為事件,求事件發(fā)生的概率;

(2)若記“”為事件,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2015年五一節(jié)”期間,高速公路車輛“較多,交警部門通過路面監(jiān)控裝置抽樣調查某一山區(qū)路段汽車行駛速度,采用的方法是:按到達監(jiān)控點先后順序,每隔50輛抽取一輛,總共抽取120輛,分別記下其行車速度,將行車速度km/h分成七段[60,65,[65,70,[70,75,[75,80,[80,85,[85,90,[90,95后得到如圖所示的頻率分布直方圖,據圖解答下列問題:

1求a的值,并說明交警部門采用的是什么抽樣方法?

2若該路段的車速達到或超過90km/h即視為超速行駛,求超速行駛的概率

3求這120輛車行駛速度的眾數(shù)和中位數(shù)的估計值精確到0.1

查看答案和解析>>

同步練習冊答案