【題目】已知橢圓經(jīng)過點(diǎn),且離心率為.

(1)求橢圓的方程;

(2)若點(diǎn)、在橢圓上,且四邊形是矩形,求矩形的面積的最大值.

【答案】(1)(2)矩形面積的最大值為.

【解析】

(1)由橢圓過點(diǎn),且離心率為,得到,,進(jìn)而可求出結(jié)果;

(2)先由題意知直線不垂直于軸,設(shè)直線,聯(lián)立直線與橢圓方程,設(shè),,根據(jù)韋達(dá)定理和題中條件可求出;再求出的最大值即可得出結(jié)果.

解:(1)因?yàn)闄E圓經(jīng)過點(diǎn),且離心率為

所以,,又因?yàn)?/span>

可解得,,焦距為.

所求橢圓的方程為.

(2)由題意知直線不垂直于軸,可設(shè)直線,

設(shè),,則

又因?yàn)?/span>,,

所以

化簡(jiǎn)可得.

所以

設(shè),,則,

所以.

,因?yàn)?/span>

所以上單調(diào)遞減,所以.

設(shè)直線軸交于點(diǎn)

因?yàn)榫匦?/span>面積

所以矩形面積的最大值為.

此時(shí)直線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左頂點(diǎn)為,兩個(gè)焦點(diǎn)與短軸一個(gè)頂點(diǎn)構(gòu)成等腰直角三角形,過點(diǎn)且與x軸不重合的直線l與橢圓交于M,N不同的兩點(diǎn).

(Ⅰ)求橢圓P的方程;

(Ⅱ)當(dāng)AM與MN垂直時(shí),求AM的長(zhǎng);

(Ⅲ)若過點(diǎn)P且平行于AM的直線交直線于點(diǎn)Q,求證:直線NQ恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

討論函數(shù)的圖象的交點(diǎn)個(gè)數(shù);

若函數(shù)的圖象無交點(diǎn),設(shè)直線與的數(shù)的圖象分別交于點(diǎn)P,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸長(zhǎng)為,離心率為。

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)橢圓的左,右焦點(diǎn)分別為,左,右頂點(diǎn)分別為,,點(diǎn),,為橢圓上位于軸上方的兩點(diǎn),且,記直線,的斜率分別為,,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)到兩坐標(biāo)軸的距離之和等于它到定點(diǎn)的距離,記點(diǎn)P的軌跡為,給出下列四個(gè)結(jié)論:①關(guān)于原點(diǎn)對(duì)稱;②關(guān)于直線對(duì)稱;③直線有無數(shù)個(gè)公共點(diǎn);④在第一象限內(nèi),x軸和y軸所圍成的封閉圖形的面積小于.其中正確的結(jié)論是________.(寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司推出一新款手機(jī),因其功能強(qiáng)大,外觀新潮,一上市便受到消費(fèi)者爭(zhēng)相搶購,銷量呈上升趨勢(shì).散點(diǎn)圖是該款手機(jī)上市后前6周的銷售數(shù)據(jù).

(1)根據(jù)散點(diǎn)圖,用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)該款手機(jī)第8周的銷量;

(2)為了分析市場(chǎng)趨勢(shì),該公司市場(chǎng)部從前6周的銷售數(shù)據(jù)中隨機(jī)抽取2周的數(shù)據(jù),記抽取的銷量在18萬臺(tái)以上的周數(shù)為,求的分布列和數(shù)學(xué)期望.參考公式:回歸直線方程,其中:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為分別為橢圓的左、右頂點(diǎn),為橢圓上的兩點(diǎn)(異于),連結(jié),且斜率是斜率的倍.

(1)求橢圓的方程;

(2)證明:直線恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)在圖中作出函數(shù)y =的圖象,并求出其與直線圍成的封閉圖形的面積;

(Ⅱ)若g(x)=|2x-a|+|x-1|.當(dāng)+g(x)≥3對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)a的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(),曲線在點(diǎn)處的切線方程為.

(1)求實(shí)數(shù)的值,并求的單調(diào)區(qū)間;

(2)試比較的大小,并說明理由;

(3)求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案