A. | (-$\frac{3\sqrt{2}}{2}$,$\frac{3\sqrt{2}}{2}$) | B. | (-$\frac{3\sqrt{2}}{2}$,-$\frac{3}{2}$] | C. | (-$\sqrt{2}$,$\sqrt{2}$) | D. | (-$\sqrt{2}$,-1] |
分析 由題意求出曲線的普通方程,結(jié)合直線與曲線的圖形,求出滿足題意的b的范圍即可.
解答 解:曲線$\left\{\begin{array}{l}{x=\frac{3}{2}cosθ}\\{y=\frac{3}{2}sinθ}\end{array}\right.$(θ為參數(shù),且-$\frac{π}{2}$≤θ≤$\frac{π}{2}$),化為:x2+y2=$\frac{9}{4}$(x≥0),表示以原點(diǎn)為圓心,$\frac{3}{2}$為半徑的右半圓,
直線y=x+b與$\left\{\begin{array}{l}{x=\frac{3}{2}cosθ}\\{y=\frac{3}{2}sinθ}\end{array}\right.$(θ為參數(shù),且-$\frac{π}{2}$≤θ≤$\frac{π}{2}$)有兩個(gè)不同的交點(diǎn),
過(0,-$\frac{3}{2}$)時(shí),b=-$\frac{3}{2}$;直線與半圓相切時(shí),b=-$\frac{3\sqrt{2}}{2}$
所以實(shí)數(shù)b的取值范圍是(-$\frac{3\sqrt{2}}{2}$,-$\frac{3}{2}$].
故選B.
點(diǎn)評(píng) 本題是中檔題,考查參數(shù)方程與普通方程的求法,考查數(shù)形結(jié)合的思想,直線的截距的應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,5] | B. | [1,5] | C. | (0,5) | D. | [1,25] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | a>c>b | C. | b>a>c | D. | b>c>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com