【題目】已知各項(xiàng)為正的等比數(shù)列{an}的前n項(xiàng)和為Sn , S4=30,過(guò)點(diǎn)P(n,log2an)和Q(n+2,log2an+1)(n∈N*)的直線的一個(gè)方向向量為(﹣1,﹣1)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,數(shù)列{bn}的前n項(xiàng)和為Tn , 證明:對(duì)于任意n∈N* , 都有Tn .
【答案】
(1)解:∵各項(xiàng)為正的等比數(shù)列{an}的前n項(xiàng)和為Sn,S4=30,
過(guò)點(diǎn)P(n,log2an)和Q(n+2,log2an+1)(n∈N*)的直線的一個(gè)方向向量為(﹣1,﹣1),
∴ ,
解得 ,q=4,
∴an= .
(2)解:∵bn= = = ( ﹣ ),
∴數(shù)列{bn}的前n項(xiàng)和:
Tn= ( + + +…+ + )
= ( ﹣ )
= ( + ﹣ ﹣ )
< .
∴對(duì)于任意n∈N*,都有Tn
【解析】(1)利用等比數(shù)列前n項(xiàng)和公式及直線的方向向量性質(zhì)列出方程組,由此能求出首項(xiàng)和公比,從而能求出數(shù)列{an}的通項(xiàng)公式.(2)由bn= = ( ﹣ ),利用裂項(xiàng)法能證明對(duì)于任意n∈N* , 都有Tn .
【考點(diǎn)精析】利用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式對(duì)題目進(jìn)行判斷即可得到答案,需要熟知數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=lnx﹣ ax2﹣bx,若x=1是f(x)的極大值點(diǎn),則a的取值范圍為( )
A.(﹣1,0)
B.(﹣1,+∞)
C.(0,+∞)
D.(﹣∞,﹣1)∪(0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時(shí),xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣ |+|x+m|(m>0)
(1)證明:f(x)≥4;
(2)若f(2)>5,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為1538,則判斷框內(nèi)可填入的條件為( )
A.n>6?
B.n>7?
C.n>8?
D.n>9?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,F(xiàn)是橢圓P: (a>b>0)的右焦點(diǎn),已知A(0,﹣2)與橢圓左頂點(diǎn)關(guān)于直線y=x對(duì)稱,且直線AF的斜率為 ,
(1)求橢圓P的方程;
(2)過(guò)點(diǎn)Q(﹣1,0)的直線l交橢圓P于M、N兩點(diǎn),交直線x=﹣4于點(diǎn)E, = , = ,證明:λ+μ為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(分)已知橢圓的左焦點(diǎn)為,過(guò)的直線與交于、兩點(diǎn).
()求橢圓的離心率.
()當(dāng)直線與軸垂直時(shí),求線段的長(zhǎng).
()設(shè)線段的中點(diǎn)為,為坐標(biāo)原點(diǎn),直線交橢圓交于、兩點(diǎn),是否存在直線使得?若存在,求出直線的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,AC是弦,AD⊥CE,垂足為D,AC平分∠BAD.
(1)求證:直線CE是⊙O的切線;
(2)求證:AC2=ABAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果執(zhí)行右邊的程序框圖,輸入正整數(shù)N(N≥2)和實(shí)數(shù)a1 , a2 , …,an , 輸出A,B,則( )
A.A+B為a1 , a2 , …,an的和
B. 為a1 , a2 , …,an的算術(shù)平均數(shù)
C.A和B分別是a1 , a2 , …,an中最大的數(shù)和最小的數(shù)
D.A和B分別是a1 , a2 , …,an中最小的數(shù)和最大的數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com