【題目】執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為1538,則判斷框內(nèi)可填入的條件為(

A.n>6?
B.n>7?
C.n>8?
D.n>9?

【答案】B
【解析】解:模擬執(zhí)行程序框圖,可得
s=0,n=1
s=2,n=2
s=10,n=3
s=34,n=4
s=98,n=5
s=258,n=6
s=642,n=7
s=1538,n=8
此時,由題意,滿足條件,退出循環(huán),輸出s的值為1538,則判斷框內(nèi)可填入的條件為:n>7?
故選:B.
【考點精析】解答此題的關(guān)鍵在于理解程序框圖的相關(guān)知識,掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】2018年1月31日晚上月全食的過程分為初虧、食既、食甚、生光、復圓五個階段,月食的初虧發(fā)生在19時48分,20時51分食既,食甚時刻為21時31分,22時08分生光,直至23時12分復圓.全食伴隨有藍月亮和紅月亮,全食階段的“紅月亮”將在食甚時刻開始,生光時刻結(jié)束,一市民準備在19:55至21:56之間的某個時刻欣賞月全食,則他等待“紅月亮”的時間超過30分鐘的概率是__________。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=|2x﹣ |+|2x+m|(m≠0).
(1)證明:f(x)≥2 ;
(2)若當m=2時,關(guān)于實數(shù)x的不等式f(x)≥t2 t恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,點是棱上的一個動點,平面交棱于點.下列命題正確的為_______________.

①存在點,使得//平面;

②對于任意的點,平面平面;

③存在點,使得平面;

④對于任意的點,四棱錐的體積均不變.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩點,若直線上至少存在三個點,使得是直角三角形,則實數(shù)的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知各項為正的等比數(shù)列{an}的前n項和為Sn , S4=30,過點P(n,log2an)和Q(n+2,log2an+1)(n∈N*)的直線的一個方向向量為(﹣1,﹣1)
(1)求數(shù)列{an}的通項公式;
(2)設bn= ,數(shù)列{bn}的前n項和為Tn , 證明:對于任意n∈N* , 都有Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓O的內(nèi)接四邊形BCED,BC為圓O的直徑,BC=2,延長CB,ED交于A點,使得∠DOB=∠ECA,過A作圓O的切線,切點為P,

(1)求證:BD=DE;
(2)若∠ECA=45°,求AP2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐B﹣ACDE中,AE⊥平面ABC,CD∥AE,∠ABC=3∠BAC=90°,BF⊥AC于F,AC=4CD=4,AE=3.

(1)求證:BE⊥DF;
(2)求二面角B﹣DE﹣F的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,正三棱柱的高為2,的中點,的中點

(1)證明:平面;

(2)若三棱錐的體積為,求該正三棱柱的底面邊長.

查看答案和解析>>

同步練習冊答案