12.如圖,在直三棱柱ABC-A1B1C1中,底面△ABC為等腰直角三角形,∠ABC=90°,AB=4,AA1=6,點(diǎn)M時(shí)BB1中點(diǎn).
(1)求證;平面A1MC⊥平面AA1C1C;
(2)求點(diǎn)A到平面A1MC的距離.

分析 (1)以B為原點(diǎn),BC為x軸,BA為y軸,BB1為z軸,建立空間直角坐標(biāo)系,利用向量法能證明平面A1MC⊥平面AA1C1C.
(2)由$\overrightarrow{A{A}_{1}}$=(0,0,6),平面A1MC的法向量$\overrightarrow{n}$=(3,-3,4),利用向量法能求出點(diǎn)A到平面A1MC的距離.

解答 證明:(1)以B為原點(diǎn),BC為x軸,BA為y軸,BB1為z軸,建立空間直角坐標(biāo)系,
由題意A1(0,4,6),M(0,0,3),C(4,0,0),A(0,4,0),
$\overrightarrow{M{A}_{1}}$=(0,4,3),$\overrightarrow{MC}$=(4,0,-3),$\overrightarrow{A{A}_{1}}$=(0,0,6),$\overrightarrow{AC}$=(4,-4,0),
設(shè)平面A1MC的法向量為$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{M{A}_{1}}=4y+3z=0}\\{\overrightarrow{n}•\overrightarrow{MC}=4x-3z=0}\end{array}\right.$,取x=3,得$\overrightarrow{n}$=(3,-3,4),
設(shè)平面AA1C1C的法向量$\overrightarrow{m}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{A{A}_{1}}=6c=0}\\{\overrightarrow{m}•\overrightarrow{AC}=4a-4b=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,1,0),
∴$\overrightarrow{m}•\overrightarrow{n}$=0,
∴平面A1MC⊥平面AA1C1C.
解:(2)∵$\overrightarrow{A{A}_{1}}$=(0,0,6),平面A1MC的法向量$\overrightarrow{n}$=(3,-3,4),
∴點(diǎn)A到平面A1MC的距離:
d=$\frac{|\overrightarrow{A{A}_{1}}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{24}{\sqrt{34}}$=$\frac{12\sqrt{34}}{17}$.

點(diǎn)評(píng) 本題考查面面垂直的證明,考查點(diǎn)到平面的距離的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若z=(a-$\sqrt{2}$)+ai為純虛數(shù),其中a∈R,則$\frac{a+{i}^{7}}{1+ai}$=( 。
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,四棱錐P-ABCD,底面ABCD是邊長(zhǎng)為2的菱形,∠ABC=60°,M為側(cè)棱PD的三等分點(diǎn)(靠近D點(diǎn)),O為AC,BD的交點(diǎn),且PO⊥面ABCD,PO=$\sqrt{6}$.
(1)若在棱PD上存在一點(diǎn)N,且BN∥面AMC,確定點(diǎn)N的位置,并說(shuō)明理由;
(2)求點(diǎn)B到平面MAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖1,在直角梯形EFBC中,F(xiàn)B∥EC,BF⊥EF,且EF=$\frac{1}{2}$FB=$\frac{1}{3}$EC=1,A為線段FB的中點(diǎn),AD⊥EC于D,沿邊AD將四邊形ADEF翻折,使平面ADEF與平面ABCD垂直,M為ED的中點(diǎn),如圖2.
(I)求證:BC⊥平面EDB;
(Ⅱ)求點(diǎn)M到平面BEF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖所示,三棱錐D-ABC中,AC,BC,CD兩兩垂直,AC=CD=1,$BC=\sqrt{3}$,點(diǎn)O為AB中點(diǎn).
(Ⅰ)若過(guò)點(diǎn)O的平面α與平面ACD平行,分別與棱DB,CB相交于M,N,在圖中畫出該截面多邊形,并說(shuō)明點(diǎn)M,N的位置(不要求證明);
(Ⅱ)求點(diǎn)C到平面ABD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為$\sqrt{3}$x+y=0,則其離心率e=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,在四面體ABCD中,AB⊥BD,CD⊥DB,若AB與CD所成的角的大小為60°,則二面角C-BD-A的大小為( 。
A.60°或90°B.60°C.60°或120°D.30°或150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知橢圓$\frac{{x}^{2}}{4}$+y2=1,過(guò)它的左焦點(diǎn)引傾斜角為$\frac{π}{3}$的弦PQ,則PQ中點(diǎn)坐標(biāo)為(-$\frac{12\sqrt{3}}{13}$,$\frac{3}{13}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知拋物線C:y2=x,過(guò)點(diǎn)M(2,0)作直線l:x=ny+2與拋物線C交于A,B兩點(diǎn),點(diǎn)N是定直線x=-2上的任意一點(diǎn),分別記直線AN,MN,BN的斜率為k1,k2,k3
(Ⅰ) 求$\overrightarrow{OA}•\overrightarrow{OB}$的值;
(Ⅱ) 試探求k1,k2,k3之間的關(guān)系,并給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案