(本小題滿分13分)已知中心在坐標原點O,焦點在軸上,長軸長是短軸長的2倍的橢圓經過點M(2,1)
(Ⅰ)求橢圓的方程;
(Ⅱ)直線平行于,且與橢圓交于A、B兩個不同點.
(。┤為鈍角,求直線軸上的截距m的取值范圍;
(ⅱ)求證直線MA、MBx軸圍成的三角形總是等腰三角形.
(1)(2)(3)利用直線MA、MB的傾斜角互補,
證明直線MA、MBx軸始終圍成一個等腰三角形

試題分析:解:(Ⅰ)設橢圓方程為,
 解得 
∴橢圓的方程為.             ………………………… 4分
(Ⅱ)(ⅰ)由直線平行于OM,得直線的斜率,
軸上的截距為m,所以的方程為
 得.
又直線與橢圓交于A、B兩個不同點,
,于是. ……………… 6分
為鈍角等價于,             


,
由韋達定理代入上式,
化簡整理得,即,故所求范圍是.
……………………………………………8分
(ⅱ)依題意可知,直線MA、MB的斜率存在,分別記為,.
,.      ………………………………10分



所以 , 故直線MA、MB的傾斜角互補,
故直線MA、MBx軸始終圍成一個等腰三角形.…………………… 13分
點評:對于解決解析幾何的方程問題,一般都是利用其性質得到a,b,c的關系式,然后求解得到,而對于直線與橢圓的位置關系,通常利用設而不求的數(shù)學思想,結合韋達定理,以及判別式來分析求解。尤其關注圖形的特點與斜率和向量之間的關系轉換,屬于難度題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

若正三角形的一個頂點在原點,另兩個頂點在拋物線上,則這個三角形的面積為         。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過點A(,0)作橢圓的弦,弦中點的軌跡仍是橢圓,記為,若的離心率分別為,則的關系是(     )。
A.B.=2
C.2D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,橢圓的中心在坐標原點0,頂點分別是A1, A2, B1, B2,焦點分別為F1 ,F2,延長B1F2 與A2B2交于P點,若為鈍角,則此橢圓的離心率的取值范圍為
A.(0,B.(,1)
C.(0,D.(,1)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分) 已知直線L:y=x+1與曲線C:交于不同的兩點A,B;O為坐標原點。
(1)若,試探究在曲線C上僅存在幾個點到直線L的距離恰為?并說明理由;
(2)若,且a>b,,試求曲線C的離心率e的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知,,O為坐標原點,動點E滿足:

(Ⅰ) 求點E的軌跡C的方程;
(Ⅱ)過曲線C上的動點P向圓O:引兩條切線PA、PB,切點分別為A、B,直線AB與x軸、y軸分別交于M、N兩點,求ΔMON面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線:的焦點為,、是拋物線上異于坐標原點的不同兩點,拋物線在點處的切線分別為、,且相交于點.

(1) 求點的縱坐標; 
(2) 證明:、三點共線;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓:的一個頂點為,離心率為.直線與橢圓交于不同的兩點M,N.
(Ⅰ)求橢圓的方程;
(Ⅱ)當△AMN得面積為時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
已知中心在原點O,焦點在x軸上的橢圓E過點(1,),離心率為
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線xy+1=0與橢圓E相交于A、B(BA上方)兩點,問是否存在直線l,使l與橢圓相交于C、D(CD上方)兩點且ABCD為平行四邊形,若存在,求直線l的方程與平行四邊形ABCD的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案