【題目】某研究小組在電腦上進(jìn)行人工降雨模擬實驗,準(zhǔn)備用、三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其試驗數(shù)據(jù)統(tǒng)計如表:

方式

實施地點

大雨

中雨

小雨

模擬實驗總次數(shù)

4次

6次

2次

12次

3次

6次

3次

12次

2次

2次

8次

12次

假定對甲、乙、丙三地實施的人工降雨彼此互不影響,請你根據(jù)人工降雨模擬實驗的統(tǒng)計數(shù)據(jù):

(Ⅰ)求甲、乙、丙三地都恰為中雨的概率;

(Ⅱ)考慮到旱情和水土流失,如果甲地恰需中雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),丙地只能是小雨或中雨即達(dá)到理想狀態(tài),記“甲、乙、丙三地中達(dá)到理想狀態(tài)的個數(shù)”為隨機變量,求隨機變量的分布列和數(shù)學(xué)期望

【答案】1;(2)分布列見解析,數(shù)學(xué)期望.

【解析】試題分析:(1)由人工降雨模擬實驗的統(tǒng)計數(shù)據(jù),用、三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,求出大雨、中雨、小雨的概率分布表,再利用相互獨立事件概率計算公式求出三地都為中雨的概率;(2的可能取值為,,,,分別求出取這幾個值時的概率,再求出分布列和數(shù)學(xué)期望.

試題解析:(1)由人工降雨模擬實驗的統(tǒng)計數(shù)據(jù),用、三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,得到大雨、中雨、小雨的概率如下表:

方式

實施地點

大雨

中雨

小雨
















甲、乙、丙三地都恰為中雨為事件,則

2)設(shè)甲、乙、丙三地達(dá)到理想狀態(tài)的概率分別為、,

,

的可能取值為0,1,2,3,

;

所以隨機變量的分布列為:


0

1

2

3






數(shù)學(xué)期望

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若一數(shù)集的任一元素的倒數(shù)仍在該集合中,則稱該數(shù)集為“可倒數(shù)集”.

(1)判斷集合A={-1,1,2}是否為可倒數(shù)集;

(2)試寫出一個含3個元素的可倒數(shù)集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)若恒成立,求的取值范圍;

)設(shè),,(為自然對數(shù)的底數(shù)).是否存在常數(shù),使恒成立,若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) 的定義域是R,對于任意實數(shù) ,恒有,且當(dāng) 時, 。

1求證: ,且當(dāng) 時,有

2判斷 R上的單調(diào)性;

3設(shè)集合AB,若A∩B,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1上是單調(diào)函數(shù),求實數(shù)取值范圍.

2)求在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個頂點分別為,焦點在軸上,離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)點軸上一點,過軸的垂線交橢圓于不同的兩點,過的垂線交于點.求的面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)討論函數(shù)的單調(diào)性;

(2)如果對于任意的,都有成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國個人所得稅法》規(guī)定,公民全月工資所得不超過3500元的部分不必納稅,超過3500元的部分為全月應(yīng)納稅所得額。此項稅款按下表分段累計計算:

全月應(yīng)納稅所得額

稅率(%)

不超過1500元的部分

3

超過1500元至4500元的部分

10

超過4500元至9000元的部分

20

(1)某人10月份應(yīng)交此項稅款為350元,則他10月份的工資收入是多少?

(2)假設(shè)某人的月收入為元, ,記他應(yīng)納稅為元,求的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,且滿足,求數(shù)列的通項公式.勤于思考的小紅設(shè)計了下面兩種解題思路,請你選擇其中一種并將其補充完整.

思路1:先設(shè)的值為1,根據(jù)已知條件,計算出_________ __________, _________

猜想: _______.

然后用數(shù)學(xué)歸納法證明.證明過程如下:

①當(dāng)時,________________,猜想成立

②假設(shè)N*)時,猜想成立,即_______

那么,當(dāng)時,由已知,得_________

,兩式相減并化簡,得_____________(用含的代數(shù)式表示).

所以,當(dāng)時,猜想也成立.

根據(jù)①和②,可知猜想對任何N*都成立.

思路2:先設(shè)的值為1,根據(jù)已知條件,計算出_____________

由已知,寫出的關(guān)系式: _____________________,

兩式相減,得的遞推關(guān)系式: ____________________

整理: ____________

發(fā)現(xiàn):數(shù)列是首項為________,公比為_______的等比數(shù)列.

得出:數(shù)列的通項公式____,進(jìn)而得到____________

查看答案和解析>>

同步練習(xí)冊答案