【題目】已知函數(shù),.

)若恒成立,求的取值范圍;

)設(shè),(為自然對數(shù)的底數(shù)).是否存在常數(shù),使恒成立,若存在,求出的取值范圍;若不存在,請說明理由.

【答案】;(.

【解析】試題分析: )利用函數(shù)的導(dǎo)數(shù)求出函數(shù)的最小值,根據(jù)最小值大于 就能 求出 的取值范圍;)此恒成立問題轉(zhuǎn)化為 小于等于 的最小值,在求函數(shù)的最小值時,運(yùn)用了二次求導(dǎo).

試題解析:)由已知得,的定義域為,且

當(dāng)時,恒成立,

,由,

的取值范圍為.

)由已知得,,其定義域為.

上單調(diào)遞減,在上單調(diào)遞增,

,

,則

再令,則

,.

上單調(diào)遞減,

,且,

即存在,使上單調(diào)遞增,上單調(diào)遞減,

的最小值就是中較小的那個,

,

恒成立,即

存在實(shí)數(shù)使恒成立,取值范圍為.

點(diǎn)睛:本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,對數(shù)函數(shù)的性質(zhì)及分類討論思想,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性時要注意先求函數(shù)的定義域,若所求的導(dǎo)數(shù)含有參數(shù),在進(jìn)行討論時要做到分類標(biāo)準(zhǔn)統(tǒng)一,對參數(shù)的討論要不重不漏.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2016高考四川文科】已知數(shù)列{ }的首項為1, 為數(shù)列的前n項和, ,其中q>0 .

)若 成等差數(shù)列,求的通項公式;

)設(shè)雙曲線 的離心率為 ,且 ,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中均為實(shí)數(shù), 為自然對數(shù)的底數(shù).

(I)求函數(shù)的極值;

(II)設(shè),若對任意的,

恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)在頸椎病患者越來越多,甚至大學(xué)生也出現(xiàn)了頸椎病,年輕人患頸椎病多與工作、生活方式有關(guān),某調(diào)查機(jī)構(gòu)為了了解大學(xué)生患有頸椎病是否與長期過度使用電子產(chǎn)品有關(guān),在遂寧市中心醫(yī)院隨機(jī)的對入院的50名大學(xué)生進(jìn)行了問卷調(diào)查,得到了如下的4×4列聯(lián)表:

未過度使用

過度使用

合計

未患頸椎病

15

5

20

患頸椎病

10

20

30

合計

25

25

50

(1)是否有99.5%的把握認(rèn)為大學(xué)生患頸錐病與長期過度使用電子產(chǎn)品有關(guān)?

(2)已知在患有頸錐病的10名未過度使用電子產(chǎn)品的大學(xué)生中,有3名大學(xué)生又患有腸胃炎,現(xiàn)在從上述的10名大學(xué)生中,抽取3名大學(xué)生進(jìn)行其他方面的排查,記選出患腸胃炎的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

參考數(shù)據(jù)與公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是(-∞,+∞)上的奇函數(shù),且f(x+2)=-f(x),當(dāng)0≤x≤1時,f(x)=x,則f(7.5)等于(  )

A. 0.5 B. -0.5

C. 1.5 D. -1.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,,,向量垂直,且.

(1)求數(shù)列的通項公式;

2)若數(shù)列滿足,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

(1)求的值;

(2)猜測的單調(diào)性,并用定義證明;

(3)若對任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究小組在電腦上進(jìn)行人工降雨模擬實(shí)驗,準(zhǔn)備用、三種人工降雨方式分別對甲、乙、丙三地實(shí)施人工降雨,其試驗數(shù)據(jù)統(tǒng)計如表:

方式

實(shí)施地點(diǎn)

大雨

中雨

小雨

模擬實(shí)驗總次數(shù)

4次

6次

2次

12次

3次

6次

3次

12次

2次

2次

8次

12次

假定對甲、乙、丙三地實(shí)施的人工降雨彼此互不影響,請你根據(jù)人工降雨模擬實(shí)驗的統(tǒng)計數(shù)據(jù):

(Ⅰ)求甲、乙、丙三地都恰為中雨的概率;

(Ⅱ)考慮到旱情和水土流失,如果甲地恰需中雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),丙地只能是小雨或中雨即達(dá)到理想狀態(tài),記“甲、乙、丙三地中達(dá)到理想狀態(tài)的個數(shù)”為隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=,其中x∈[2,+∞).

(1)求f(x)的最小值;

(2)若f(x)>a恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案