(1)若x>-1,求y=x+
1
x+1
的最小值,并求對應(yīng)的x的值?
(2)若x≥0,求y=
x2+x+2
x+1
的最小值.
考點:基本不等式
專題:不等式的解法及應(yīng)用
分析:(1)(2)變形利用基本不等式的性質(zhì)即可得出.
解答: 解:(1)∵x>-1,∴y=x+
1
x+1
=x+1+
1
x+1
-1≥2
(x+1)•
1
x+1
-1=1,當且僅當x=0時取等號,
∴y=x+
1
x+1
的最小值是1,此時x=0.
(2)∵x≥0,∴y=
x2+x+2
x+1
=x+1+
2
x+1
-1≥2
(x+1)•
2
x+1
-1=2
2
-1,當且僅當x=
2
-1時取等號.
∴y=
x2+x+2
x+1
的最小值是2
2
-1.
點評:本題考查了變形利用基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知過點M(-3,-3)的直線l被圓x2+y2+4y-21=0所截得的弦長為4
5
,則直線l的方程為( 。
A、2x-y+3=0
B、x+2y+9=0
C、x-2y-9=0
D、2x-y+3=0或x+2y+9=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log2
x+4
+2)(x>0)的反函數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z為虛數(shù),條件甲:z+
1
z
是實數(shù),條件乙:|z|=1,則(  )
A、甲是乙的必要非充分條件
B、甲是乙的充分非必要條件
C、甲是乙的充要條件
D、甲既不是乙的必要條件,也不是乙的充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“x2-x-6<0”是“|x|<2”的( 。
A、充要條件
B、充分而不必要條件
C、必要而不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把110010(2)化為五進制數(shù)的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}是等差數(shù)列,a4=7,則S7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)的焦點為F,F(xiàn)關(guān)于原點的對稱點為P,過F作x軸的垂線交拋物線于M,N兩點,有下列四個命題:
①△PMN必為直角三角形;
②△PMN必為等邊三角形;
③直線PM必與拋物線相切;
④直線PM必與拋物線相交.
其中正確的命題是( 。
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果某種彩票中獎的概率為
2
1000
,那么用概率的意義解釋買1000張彩票的錯誤敘述是(  )
A、可能1張中獎
B、一定有2張中獎
C、可能0張中獎
D、可能3張中獎

查看答案和解析>>

同步練習(xí)冊答案