15.設拋物線C:y2=4x的焦點為F,過F的直線l與拋物線交于A,B兩點,M為拋物線C的準線與x軸的交點,若|AB|=8,則tan∠AMB=2$\sqrt{2}$.

分析 設AB方程y=k(x-1),與拋物線方程y2=4x聯(lián)立,得到x1+x2=$\frac{2{k}^{2}+4}{{k}^{2}}$,根據(jù)弦長公式得到$\frac{2{k}^{2}+4}{{k}^{2}}$+2=8,求出k2=1,解得A,B的坐標,即可求出tan∠ACB.

解答 解:焦點F(1,0),M(-1,0),設AB方程y=k(x-1),
設A(x1,y1),B(x2,y2),
由$\left\{\begin{array}{l}{y=k(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,即k2x2-2(k2+2)x+k2=0,
∴x1+x2=$\frac{2{k}^{2}+4}{{k}^{2}}$,
∵|AB|=x1+x2+p=$\frac{2{k}^{2}+4}{{k}^{2}}$+2=8,
∴k2=1,
即x2-6x+1=0,
解得x=3±2$\sqrt{2}$,
即A(3+2$\sqrt{2}$,2+2$\sqrt{2}$),B(3-2$\sqrt{2}$,2-2$\sqrt{2}$),
∴kAM=$\frac{2+2\sqrt{2}}{4+2\sqrt{2}}$=$\frac{\sqrt{2}}{2}$=tanα,kBM=$\frac{2-2\sqrt{2}}{4-2\sqrt{2}}$=-$\frac{\sqrt{2}}{2}$=tanβ,
∴tan∠AMB=$\frac{{k}_{AM}-{k}_{BM}}{1+{k}_{AM}{k}_{BM}}$=2$\sqrt{2}$,
故答案為:2$\sqrt{2}$.

點評 本題考查直線與拋物線的位置關系,考查差角的正切公式,求根據(jù)弦長公式求出k的值是關鍵,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知拋物線C:y2=16x,焦點為F,直線l:x=-1,點A∈l,線段AF與拋物線C的交點為B,若|FA|=5|FB|,則|FA|=( 。
A.$6\sqrt{2}$B.35C.$4\sqrt{3}$D.40

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知袋子中裝有紅色球1個,黃色球1個,黑色球n個(小球大小形狀相同),從中隨機抽取1個小球,取到黑色小球的概率是$\frac{1}{3}$.
(Ⅰ)求n的值;
(Ⅱ)若紅色球標號為0,黃色球標號為1,黑色球標號為2,現(xiàn)從袋子中有放回地隨機抽取2個小球,記第一次取出的小球標號為a,第二次取出的小球標號為b.
(。┯洝癮+b=2”為事件A,求事件A的概率;
(ⅱ)在區(qū)間[0,2]內(nèi)任取2個實數(shù)x,y,求事件“x2+y2>(a-b)2恒成立”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,四棱柱ABCD-A′B′C′D′中,側(cè)棱AA′⊥ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA′=AB=2,E為棱AA′的中點.
(1)求證:B′C′⊥CE;
(2)求二面角B′-CE-C′的余弦值;
(3)設點M在線段C′E上,且直線AM與平面ADD′A′所成角的正弦值為$\frac{{\sqrt{2}}}{6}$,求線段AM的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在平面直角坐標系xOy中,雙曲線中心在原點,焦點在x軸上,漸近線方程為4x±3y=0,則它的離心率為( 。
A.$\frac{5}{3}$B.$\frac{5}{4}$C.$\frac{4}{3}$D.$\frac{\sqrt{7}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.當實數(shù)x,y滿足$\left\{\begin{array}{l}x+2y-4≤0\\ x-y-1≤0\\ x≥1\end{array}\right.$時,1≤ax+y≤4恒成立,則實數(shù)a的取值范圍( 。
A.[1,$\frac{3}{2}$]B.[-1,2]C.[-2,3]D.[1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列命題正確的個數(shù)為( 。
①命題“若x≠1,則x2-3x+2≠0”的逆否命題是“若x2-3x+2=0,則x=1”
②若命題P:?x∈R,x2+x+1≠0,則¬p:?x∈R,x2+x+1=0
③若p∨q為真命題,則p,q均為真命題
④“x>3”是“x2-3x+2>0”的充分不必要條件
⑤在△ABC中,若A>B,則sinA>sinB.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在△ABC中,若A=30°,b=16,此三角形的面積S=64,則△ABC中角B為( 。
A.75°B.30°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知非空集合M滿足M⊆{0,1,2,…,n}(n≥2,n∈N+).若存在非負整數(shù)k(k≤n),使得當a∈M時,均有2k-a∈M,則稱集合M具有性質(zhì)P.設具有性質(zhì)P的集合M的個數(shù)為f(n).
(1)求f(2)的值;
(2)求f(n)的表達式.

查看答案和解析>>

同步練習冊答案