13.從隨機(jī)編號(hào)為0001,0002,…,1500的1500名參加這次南昌市四校聯(lián)考期末測(cè)試的學(xué)生中用系統(tǒng)抽樣的方法抽取一個(gè)樣本進(jìn)行成績(jī)分析,已知樣本中編號(hào)最小的兩個(gè)編號(hào)分別為0018,0068,則樣本中最大的編號(hào)應(yīng)該是( 。
A.1466B.1467C.1468D.1469

分析 根據(jù)系統(tǒng)抽樣的定義確定樣本間隔即可.

解答 解:樣本中編號(hào)最小的兩個(gè)編號(hào)分別為0018,0068,
則樣本間隔為68-18=50,
則共抽取1500÷50=30,
則最大的編號(hào)為18+50×29=1468,
故選:C

點(diǎn)評(píng) 本題主要考查系統(tǒng)抽樣的應(yīng)用,根據(jù)條件求出樣本間隔和樣本容量是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.一批10件產(chǎn)品,其中有3件次品,7件正品,不放回抽取2次,若第一次抽到的是正品,則第二次抽到次品的概率$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline{z}$,若z=1+i(i為虛數(shù)單位),則復(fù)數(shù)$\frac{4}{z}$-$\overline{z}$的虛部為( 。
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.復(fù)數(shù)$\frac{i^3}{{{{(1+i)}^2}}}$=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{i}{2}$D.$\frac{i}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某單位為綠化環(huán)境,移栽了甲、乙、丙三棵大樹.設(shè)甲、乙、丙三種大樹移栽的成活率分別為0.4和0.5和0.8,且各株大樹是否成活互不影響.求移栽的3棵大樹中:
(1)恰有一棵大樹成活的概率;
(2)恰有兩棵大樹成活的概率.
(3)至少有一顆大樹成活的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知首項(xiàng)為正的數(shù)列{an}中,相鄰兩項(xiàng)不為相反數(shù),且前n項(xiàng)和${S_n}=\frac{1}{4}({a_n}-5)({a_n}+7)$
(1)求證:數(shù)列{an}為等差數(shù)列;
(2)設(shè)數(shù)列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n項(xiàng)和為Tn,對(duì)一切正整數(shù)n都有Tn≥M成立,求M的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知$f(x)=a+\frac{2}{{{3^x}+1}}$,a是實(shí)常數(shù),
(1)當(dāng)a=1時(shí),寫出函數(shù)f(x)的值域;
(2)判斷并證明f(x)的單調(diào)性;
(3)若f(x)是奇函數(shù),不等式f(f(x))+f(m)<0有解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題“若a<b,則a-1≤b”的逆否命題為(  )
A.若a-1≥b,則a>bB.若a-1≤b,則a≥bC.若a-1>b,則a>bD.若a-1>b,則a≥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知公差d≠0的等差數(shù)列{an}滿足a1=2,且a1,a2,a5成等比數(shù)列
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)記Sn為數(shù)列{an}的前n項(xiàng)和,求使得Sn>60n+800成立的最小正整數(shù)n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案