分析 (1)利用數(shù)列的遞推關(guān)系式,結(jié)合an+1=Sn+1-Sn,推出數(shù)列是等差數(shù)列.
(2)求出數(shù)列的通項(xiàng)公式,化簡(jiǎn)數(shù)列的通項(xiàng)公式,求出數(shù)列的和,利用數(shù)列的單調(diào)性求解即可.
解答 (本小題12分)解:(1)證明:∵Sn=$\frac{1}{4}$(an-5)(an+7),
∴an+1=Sn+1-Sn
=$\frac{1}{4}$(an+1-5)(an+1+7)-$\frac{1}{4}$(an-5)(an+7),
∴(an+1-an-2)(an+1+an)=0,
∴an+1-an=2或an+1+an=0.
又相鄰兩項(xiàng)不為相反數(shù),
∴an+1-an=2,
∴數(shù)列{an}為公差為2的等差數(shù)列.
(2)由S1=$\frac{1}{4}$(a1-5)(a1+7)⇒a1=7或a1=-5,
∵數(shù)列{an}的首項(xiàng)為正,∴a1=7,
由(1)得an=2n+5,
∴$\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{(2n+5)(2n+7)}=\frac{1}{2}(\frac{1}{2n+5}-\frac{1}{2n+7})$
∴${T_n}=\frac{1}{2}[(\frac{1}{7}-\frac{1}{9})+(\frac{1}{9}-\frac{1}{11})+…+(\frac{1}{2n+5}-\frac{1}{2n+7})]=\frac{1}{2}(\frac{1}{7}-\frac{1}{2n+7})$
∴數(shù)列{Tn}(n∈N*)在[1,+∞)上是遞增數(shù)列.
又當(dāng)n=1時(shí),${T_1}=\frac{1}{63}$
∴要使得對(duì)于一切正整數(shù)n都有Tn≥M成立,
只要M≤$\frac{1}{63}$,所以M的最大值為$\frac{1}{63}$.
點(diǎn)評(píng) 本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,等差數(shù)列的判斷,以及數(shù)列求和,數(shù)列的函數(shù)特征的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①簡(jiǎn)單隨機(jī)抽樣,②系統(tǒng)抽樣,③分層抽樣 | |
B. | ①分層抽樣,②系統(tǒng)抽樣,③簡(jiǎn)單隨機(jī)抽樣 | |
C. | ①系統(tǒng)抽樣,②簡(jiǎn)單隨機(jī)抽樣,③分層抽樣 | |
D. | ①簡(jiǎn)單隨機(jī)抽樣,②分層抽樣,③系統(tǒng)抽樣 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1466 | B. | 1467 | C. | 1468 | D. | 1469 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (3,9) | C. | (1,3) | D. | (9,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com