1.復(fù)數(shù)$\frac{i^3}{{{{(1+i)}^2}}}$=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{i}{2}$D.$\frac{i}{2}$

分析 利用復(fù)數(shù)的運(yùn)算法則即可得出.

解答 解:復(fù)數(shù)$\frac{i^3}{{{{(1+i)}^2}}}$=$\frac{-i}{2i}$=-$\frac{1}{2}$,
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)(1,e)和$(e,\frac{{\sqrt{21}}}{5})$都在橢圓上,其中e為橢圓的離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)a>2,B1,B2分別是線段OF1,OF2的中點(diǎn),過(guò)點(diǎn)B1作直線交橢圓于P,Q兩點(diǎn).若PB2⊥QB2,求△PB2Q的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知ω>0,在函數(shù)y=4sinωx與y=4cosωx的圖象的交點(diǎn)中,距離最近的兩個(gè)交點(diǎn)的距離為6,則ω的值為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知向量$\overrightarrow{a}$=(1,x-1),$\overrightarrow$=(y,2),若$\overrightarrow{a}$⊥$\overrightarrow$,則xy的最大值為(  )
A.-$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD=DC=2,點(diǎn)E,F(xiàn)分別為AD,PC的中點(diǎn).
(Ⅰ)證明:DF∥平面PBE
(Ⅱ)求點(diǎn)F到平面PBE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知△ABC是邊長(zhǎng)為2的正三角形,那么它的平面直觀圖△A′B′C′的面積為$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.從隨機(jī)編號(hào)為0001,0002,…,1500的1500名參加這次南昌市四校聯(lián)考期末測(cè)試的學(xué)生中用系統(tǒng)抽樣的方法抽取一個(gè)樣本進(jìn)行成績(jī)分析,已知樣本中編號(hào)最小的兩個(gè)編號(hào)分別為0018,0068,則樣本中最大的編號(hào)應(yīng)該是(  )
A.1466B.1467C.1468D.1469

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=$\frac{6}{x}$-log3x,在下列區(qū)間中,包含 f(x)零點(diǎn)的區(qū)間是( 。
A.(0,1)B.(3,9)C.(1,3)D.(9,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.點(diǎn)B在y軸上運(yùn)動(dòng),點(diǎn)C在直線l:x-y-2=0上運(yùn)動(dòng),若A(2,3),則△ABC的周長(zhǎng)的最小值為3$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案