分析 用$\overrightarrow{AB},\overrightarrow{AD}$表示出$\overrightarrow{AE},\overrightarrow{AF}$,根據(jù)數(shù)量級(jí)列出方程得出λ,μ的關(guān)系,利用基本不等式解出最小值.
解答 解:$\overrightarrow{AE}=\overrightarrow{AD}+\overrightarrow{DE}$=$\overrightarrow{AD}+λ\overrightarrow{AB}$,$\overrightarrow{AF}=\overrightarrow{AB}+\overrightarrow{BF}$=$\overrightarrow{AB}+μ\overrightarrow{AD}$.
∵$\overrightarrow{AB}⊥\overrightarrow{AD}$,∴$\overrightarrow{AB}•\overrightarrow{AD}=0$.
∴$\overrightarrow{AE}$•$\overrightarrow{AF}$=($\overrightarrow{AD}+λ\overrightarrow{AB}$)•($\overrightarrow{AB}+μ\overrightarrow{AD}$)=λ${\overrightarrow{AB}}^{2}$+μ${\overrightarrow{AD}}^{2}$=2.
∴4λ+μ=2.
∴$\frac{1}{λ}$+$\frac{1}{μ}$=$\frac{2λ+\frac{1}{2}μ}{λ}+\frac{2λ+\frac{1}{2}μ}{μ}$=$\frac{5}{2}$+$\frac{μ}{2λ}+\frac{2λ}{μ}$≥$\frac{5}{2}$+2=$\frac{9}{2}$.
當(dāng)且僅當(dāng)$\frac{μ}{2λ}=\frac{2λ}{μ}$即μ=2λ時(shí)取等號(hào).
故答案為$\frac{9}{2}$.
點(diǎn)評(píng) 本題考查了平面向量線性運(yùn)算的幾何意義,數(shù)量級(jí)運(yùn)算,基本不等式的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(7)<f(6.5)<f(4.5) | B. | f(7)<f(4.5)<f(6.5) | C. | f(4.5)<f(6.5)<f(7) | D. | f(4.5)<f(7)<f(6.5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若a>b,c>d,則a-d<b-c | B. | 若ac2>bc2,則a>b | ||
C. | 若c<b<a,且ac<0,則cb2<ab2 | D. | 若a>b,則lg(a-b)>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3-2$\sqrt{2}$ | B. | 3 | C. | 2$\sqrt{2}$ | D. | 3$+2\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com