【題目】已知定義域為R的函數(shù)f(x)在(2,+∞)上單調遞減,且y=f(x+2)為偶函數(shù),則關于x的不等式f(2x﹣1)﹣f(x+1)>0的解集為(
A.(﹣∞,﹣ )∪(2,+∞)
B.(﹣ ,2)
C.(﹣∞, )∪(2,+∞)
D.( ,2)

【答案】D
【解析】解:∵定義域為R的函數(shù)f(x)在(2,+∞)上單調遞減,且y=f(x+2)為偶函數(shù),
∴y=f(x+2)關于x=0對稱,即函數(shù)f(x+2)在(0,+∞)上為減函數(shù),
由f(2x﹣1)﹣f(x+1)>0得f(2x﹣1)>f(x+1),
即f(2x﹣3+2)>f(x﹣1+2),
即|2x﹣3|<|x﹣1|,
平方整理得3x2﹣10x+8<0,
<x<2,
即不等式的解集為( ,2),
故選:D
【考點精析】解答此題的關鍵在于理解奇偶性與單調性的綜合的相關知識,掌握奇函數(shù)在關于原點對稱的區(qū)間上有相同的單調性;偶函數(shù)在關于原點對稱的區(qū)間上有相反的單調性.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知正三角形ABC邊長為2,將它沿高AD翻折,使點B與點C間的距離為 ,此時四面體ABCD的外接球的表面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設常數(shù)使方程在區(qū)間上恰有三個解,則實數(shù)的值為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,,,且,,,,上一點,.

(1)求證:平面;

(2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】不等式|x﹣ 的解集為{x|n≤x≤m}
(1)求實數(shù)m,n;
(2)若實數(shù)a,b滿足:|a+b|<m,|2a﹣b|<n,求證:|b|<

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列關系式中正確的是( 。

A. sin11°cos10°sin168° B. sin168°sin11°cos10°

C. sin11°sin168°cos10° D. sin168°cos10°sin11°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,離心率為.

(1)求橢圓的方程;

(2)設直線與橢圓相交于, 兩點, 分別為線段, 的中點,若坐標原點在以為直徑的圓上,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,SA=SB=AB=BC=CA=6,且側面ASB⊥底面ABC,則三棱錐SABC外接球的表面積為( )

A. 60π B. 56π C. 52π D. 48π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓直線.

(1)圓的圓心到直線的距離為?

(2)圓上任意一點到直線的距離小于的概率為多少?

查看答案和解析>>

同步練習冊答案