已知命題p:?x0∈R,x0n+a1x0n-1+a2x0n-2+…+an≤0,則( 。
A、¬p:?x∈R,xn+a1xn-1+a2xn-2+…+an≤0
B、¬p:?x0∈R,x0n+a1x0n-1+a2x0n-2+…+an>0
C、¬p:?x∈R,xn+a1xn-1+a2xn-2+…+an>0
D、¬p:?x0∈R,x0n+a1x0n-1+a2x0n-2+…+an≥0
考點:命題的否定
專題:簡易邏輯
分析:直接利用特稱命題的否定是全稱命題寫出結(jié)果判斷即可.
解答: 解:因為特稱命題的 否定是全稱命題.
所以,命題p:?x0∈R,x0n+a1x0n-1+a2x0n-2+…+an≤0,則¬p:?x∈R,xn+a1xn-1+a2xn-2+…+an>0.
故選:C.
點評:本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A′B′C′D′中,DA=DC=2,DD′=1,A′C′與B′D′相交于點O′,點P在線段BD上(點P與點B不重合).
(1)若異面直線O′P與BC′所成角的余弦值為
55
55
,求DP的長度;
(2)若DP=
3
2
2
,求平面PA′C′與平面DC′B所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向量
a
=(1,2),
b
=(-2,6),則
a
b
等于( 。
A、4B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(3,2),
b
=(-1,2),
c
=(4,1),若
a
+k
c
與2
b
-
a
共線,則k的值是( 。
A、-
11
13
B、
10
13
C、-
16
13
D、
12
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡
log38
log32
可得( 。
A、log34
B、
3
2
C、3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

出下列數(shù)列{an},n∈N*
①an=n2+n+1;②an=2n+3;③an=ln
n
n+1
;④an=en-1,其中滿足性質(zhì)“對任意正整數(shù)n,an+2+an≤2an+1都成立“的數(shù)列有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=3,沿對角線BD將Rt△ABD折起,使點A到P點,且點P在平面BCD內(nèi)的射影O恰好落在CD邊上,求二面角P-BD-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩直線ax-y+2a=0和(2a-1)x+ay+a=0互相垂直,則a=( 。
A、1
B、-
1
3
C、1或0
D、-
1
5
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足(3-4i)z=|4+3i|,則z的虛部為( 。
A、-4
B、-
4
5
C、
4
5
D、4

查看答案和解析>>

同步練習(xí)冊答案