已知向量
a
=(-1,sin
a
2
)與向量
b
=(
4
5
,2cos
a
2
)垂直,其中α為第二象限角,求tanα的值.
考點(diǎn):兩角和與差的正切函數(shù),數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系
專(zhuān)題:三角函數(shù)的求值
分析:由向量的垂直可得sinα,由同角三角函數(shù)的基本關(guān)系可得.
解答: 解:∵
a
=(-1,sin
a
2
)與
b
=(
4
5
,2cos
a
2
)垂直,
a
b
=-
4
5
+2sin
α
2
cos
α
2
=0
,∴sinα=
4
5
,
又∵α在第二象限,∴cosα=-
1-sin2α
=-
3
5
,
tanα=
sinα
cosα
=-
4
3
點(diǎn)評(píng):本題考查三角函數(shù)和向量的結(jié)合,涉及同角三角函數(shù)的基本關(guān)系,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若⊙O1與⊙O2相切,且O1O2=5,⊙O1的半徑r1=2,則⊙O2的半徑r2是( 。
A、3B、5C、7D、3或7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x2-ax+(a-1)lnx,求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算或求值:
(Ⅰ)計(jì)算:(
1
300
 -
1
2
+10×(
3
2
 
1
2
×(
27
4
 
1
4
-
10
2-
3

(Ⅱ)若lga,lgb是方程2x2-4x+1=0的兩個(gè)實(shí)根,求:lg(ab)×(lg
a
b
2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)等比數(shù)列的第三項(xiàng)和第四項(xiàng)分別是12和18,試求它的第一項(xiàng)和第二項(xiàng)及通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

奇函數(shù)f(x)=
ax2+bx+1
cx+d
(x≠0,a>1),且當(dāng)x>0時(shí),f(x)有最小值2
2
,又f(1)=3.
(1)求f(x)的表達(dá)式;
(2)正整數(shù)列{an}中,a1=
5
,
an+12
an
=f(an),求數(shù)列{an}的通項(xiàng)公式;
(3)對(duì)(2)中的數(shù)列{an},若g(x)=a12x+a22+x2+a32x3+…+an2xn(n∈N*),求函數(shù)g(x)在x=1處的導(dǎo)數(shù)g′(1),并比較2g′(1)與23n2-13n的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lg(2+x)+lg(2-x),
(Ⅰ)求函數(shù)f(x)的定義域及單調(diào)遞增區(qū)間;
(Ⅱ)記函數(shù)g(x)=10f(x)+3x,求函數(shù)g(x)的值域;
(Ⅲ)若關(guān)于x的方程|g(x)|=m恰有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x3-ax+b的圖象為曲線C
(Ⅰ)若函數(shù)f(x)不是R上的單調(diào)函數(shù),求實(shí)數(shù)a的范圍.
(Ⅱ)若過(guò)曲線C外的點(diǎn)A(1,0)作曲線C的切線恰有兩條,
(1)求a,b的關(guān)系式.
(2)若存在x0∈(0,+∞),使f(x0)>x0•e x0+a成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為測(cè)量某塔AB的高度,在一幢與塔AB相距20m的樓頂D處測(cè)得塔頂A的仰角為30°,測(cè)得塔基B的俯角為45°,那么塔AB的高度是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案